

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.




          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
BLTG Core


Setup

BLTG Core [https://block-logic.com/wallet] is the original BLTG client and it builds the backbone of the network. However, it downloads and stores the entire history of BLTG transactions; depending on the speed of your computer and network connection, the synchronization process can take anywhere from a few hours to a day or more. Thankfully you only have to do this once.



Running

The following are some helpful notes on how to run BLTG on your native platform.


Unix

Unpack the files into a directory and run:


	bin/bltg-qt (GUI) or


	bin/bltgd (headless)






Windows

Unpack the files into a directory, and then run bltg-qt.exe.



macOS

Drag BLTG-Qt to your applications folder, and then run BLTG-Qt.



Need Help?


	See the documentation at the BLTG Wiki [https://en.bitcoin.it/wiki/Main_Page] TODO
for help and more information.


	Join our Discord server Discord Server [https://discord.gg/RggfhTH]







Building

The following are developer notes on how to build BLTG on your native platform. They are not complete guides, but include notes on the necessary libraries, compile flags, etc.


	Dependencies


	macOS Build Notes


	Unix Build Notes


	Windows Build Notes


	Gitian Building Guide






Development

The Bltg repo’s root README [https://github.com/Block-Logic-Technology-Group/bltg/blob/master/README] contains relevant information on the development process and automated testing.


	Developer Notes


	Multiwallet Qt Development


	Release Notes


	Release Process


	Source Code Documentation (External Link) [https://dev.visucore.com/bitcoin/doxygen/] TODO


	Translation Process


	Unit Tests


	Unauthenticated REST Interface


	Dnsseed Policy





Resources


	Join the BLTG Discord [https://discord.gg/RggfhTH].






Miscellaneous


	Assets Attribution


	Files


	Tor Support


	Init Scripts (systemd/upstart/openrc)







License

Distributed under the MIT software license.
This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit [https://www.openssl.org/]. This product includes
cryptographic software written by Eric Young (eay@cryptsoft.com), and UPnP software written by Thomas Bernard.





          

      

      

    

  

    
      
          
            
  
Unauthenticated REST Interface

The REST API can be enabled with the -rest option.


Supported API


Transactions

GET /rest/tx/<TX-HASH>.<bin|hex|json>

Given a transaction hash: returns a transaction in binary, hex-encoded binary, or JSON formats.

For full TX query capability, one must enable the transaction index via “txindex=1” command line / configuration option. (enabled by default)



Blocks

GET /rest/block/<BLOCK-HASH>.<bin|hex|json>
GET /rest/block/notxdetails/<BLOCK-HASH>.<bin|hex|json>

Given a block hash: returns a block, in binary, hex-encoded binary or JSON formats.

The HTTP request and response are both handled entirely in-memory, thus making maximum memory usage at least 4.66MB (2 MB max block, plus hex encoding) per request.

With the /notxdetails/ option JSON response will only contain the transaction hash instead of the complete transaction details. The option only affects the JSON response.



Blockheaders

GET /rest/headers/<COUNT>/<BLOCK-HASH>.<bin|hex|json>

Given a block hash: returns  amount of blockheaders in upward direction.
  
    

    Wladimir van der Laan
    

    
 
  

    
      
          
            
  The following is a list of assets used in the bitcoin source and their proper attribution.


Wladimir van der Laan [https://github.com/laanwj]


Info


	License: MIT






Assets Used

src/qt/res/icons/clock*.png, src/qt/res/icons/tx*.png,
src/qt/res/src/clock_green.svg, src/qt/res/src/clock1.svg,
src/qt/res/src/clock2.svg, src/qt/res/src/clock3.svg,
src/qt/res/src/clock4.svg, src/qt/res/src/clock5.svg,
src/qt/res/src/inout.svg, src/qt/res/src/questionmark.svg








David Vignoni [http://www.icon-king.com]


Info


	Icon Pack: NUVOLA ICON THEME for KDE 3.x


	Designer: David Vignoni (david@icon-king.com)


	License: LGPL


	Site: http://www.icon-king.com/projects/nuvola






Assets Used

src/qt/res/icons/address-book.png, src/qt/res/icons/export.png,
src/qt/res/icons/history.png, src/qt/res/icons/key.png,
src/qt/res/icons/lock_*.png, src/qt/res/icons/overview.png,
src/qt/res/icons/receive.png, src/qt/res/icons/send.png,
src/qt/res/icons/synced.png, src/qt/res/icons/filesave.png








schollidesign


Info


	Icon Pack: Human-O2


	Designer: schollidesign


	License: GNU/GPL


	Site: http://findicons.com/icon/93743/blocks_gnome_netstatus_0






Assets Used

src/qt/res/icons/connect*.png








md2k7


Info


	Designer: md2k7


	License: You are free to do with these icons as you wish, including selling, copying, modifying etc.


	License: MIT


	Site: https://bitcointalk.org/index.php?topic=15276.0






Assets Used

src/qt/res/icons/transaction*.png








Everaldo.com [http://www.everaldo.com]


Info


	Icon Pack: Crystal SVG


	Designer: http://www.everaldo.com


	License: LGPL






Assets Used

src/qt/res/icons/configure.png, src/qt/res/icons/quit.png,
src/qt/res/icons/editcopy.png, src/qt/res/icons/editpaste.png,
src/qt/res/icons/add.png, src/qt/res/icons/edit.png,
src/qt/res/icons/remove.png (edited)








Everaldo (Everaldo Coelho)


Info


	Icon Pack: Kids


	Designer: Everaldo (Everaldo Coelho)


	License: GNU/GPL


	Site: http://findicons.com/icon/17102/reload?id=17102






Assets Used

scripts/img/reload.xcf (modified), src/qt/res/movies/*.png








Vignoni David [http://techbase.kde.org/Projects/Oxygen]


Info


	Designer: Vignoni David


	License: Oxygen icon theme is dual licensed. You may copy it under the Creative Common Attribution-ShareAlike 3.0 License or the GNU Library General Public License.


	Site: http://techbase.kde.org/Projects/Oxygen






Assets Used

src/qt/res/icons/debugwindow.png








Jonas Schnelli


Info


	Designer: Jonas Schnelli (based on the original bitcoin logo from Bitboy)


	License: MIT






Assets Used

src/qt/res/icons/bitcoin.icns, src/qt/res/src/bitcoin.svg,
src/qt/res/src/bitcoin.ico, src/qt/res/src/bitcoin.png,
src/qt/res/src/bitcoin_testnet.png, docs/bitcoin_logo_doxygen.png,
src/qt/res/images/splash.png, src/qt/res/images/splash_testnet.png









          

      

      

    

  

  
    

    macOS Build Instructions and Notes
    

    
 
  

    
      
          
            
  
macOS Build Instructions and Notes

The commands in this guide should be executed in a Terminal application.
The built-in one is located in /Applications/Utilities/Terminal.app.


Preparation

Install the macOS command line tools:

xcode-select --install

When the popup appears, click Install.

Then install Homebrew [https://brew.sh].



Dependencies

brew install autoconf automake berkeley-db4 libtool boost miniupnpc openssl pkg-config protobuf python3 qt5 zmq libevent qrencode gmp





See dependencies.md for a complete overview.

If you want to build the disk image with make deploy (.dmg / optional), you need RSVG:

brew install librsvg







Berkeley DB

It is recommended to use Berkeley DB 4.8. If you have to build it yourself,
you can use the installation script included in contrib/
like so:

./contrib/install_db4.sh .





from the root of the repository.

Note: You only need Berkeley DB if the wallet is enabled (see Disable-wallet mode).



Build BLTG Core


	Clone the BLTG Core source code:

 git clone https://github.com/Block-Logic-Technology-Group/bltg.git
 cd bltg







	Make the Homebrew OpenSSL headers visible to the configure script  (do brew info openssl to find out why this is necessary, or if you use Homebrew with installation folders different from the default).

export LDFLAGS+=-L/usr/local/opt/openssl/lib
export CPPFLAGS+=-I/usr/local/opt/openssl/include







	Build bltgd:

./autogen.sh
./configure
make







	It is recommended to build and run the unit tests:

make check







	You can also create a .dmg that contains the .app bundle (optional):

make deploy











Disable-wallet mode

Note: This functionality is not yet completely implemented, and compilation using the below option will currently fail.

When the intention is to run only a P2P node without a wallet, BLTG Core may be compiled in
disable-wallet mode with:

./configure --disable-wallet





In this case there is no dependency on Berkeley DB 4.8.



Running

BLTG Core is now available at ./src/bltgd

Before running, you may create an empty configuration file:

mkdir -p "/Users/${USER}/Library/Application Support/BLTG"

touch "/Users/${USER}/Library/Application Support/BLTG/bltg.conf"

chmod 600 "/Users/${USER}/Library/Application Support/BLTG/bltg.conf"





The first time you run bltgd, it will start downloading the blockchain. This process could take many hours, or even days on slower than average systems.

You can monitor the download process by looking at the debug.log file:

tail -f $HOME/Library/Application\ Support/BLTG/debug.log







Other commands:

./src/bltgd -daemon # Starts the bltg daemon.
./src/bltg-cli --help # Outputs a list of command-line options.
./src/bltg-cli help # Outputs a list of RPC commands when the daemon is running.







Notes


	Tested on OS X 10.10 Yosemite through macOS 10.13 High Sierra on 64-bit Intel processors only.


	Building with downloaded Qt binaries is not officially supported. See the notes in #7714 [https://github.com/bitcoin/bitcoin/issues/7714]






Deterministic macOS DMG Notes

Working macOS DMGs are created in Linux by combining a recent clang,
the Apple binutils (ld, ar, etc) and DMG authoring tools.

Apple uses clang extensively for development and has upstreamed the necessary
functionality so that a vanilla clang can take advantage. It supports the use
of -F, -target, -mmacosx-version-min, and –sysroot, which are all necessary
when building for macOS.

Apple’s version of binutils (called cctools) contains lots of functionality
missing in the FSF’s binutils. In addition to extra linker options for
frameworks and sysroots, several other tools are needed as well such as
install_name_tool, lipo, and nmedit. These do not build under linux, so they
have been patched to do so. The work here was used as a starting point:
mingwandroid/toolchain4 [https://github.com/mingwandroid/toolchain4].

In order to build a working toolchain, the following source packages are needed
from Apple: cctools, dyld, and ld64.

These tools inject timestamps by default, which produce non-deterministic
binaries. The ZERO_AR_DATE environment variable is used to disable that.

This version of cctools has been patched to use the current version of clang’s
headers and its libLTO.so rather than those from llvmgcc, as it was
originally done in toolchain4.

To complicate things further, all builds must target an Apple SDK. These SDKs
are free to download, but not redistributable.
To obtain it, register for a developer account, then download the Xcode 7.3.1 dmg [https://developer.apple.com/devcenter/download.action?path=/Developer_Tools/Xcode_7.3.1/Xcode_7.3.1.dmg].

This file is several gigabytes in size, but only a single directory inside is
needed:

Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.11.sdk





Unfortunately, the usual linux tools (7zip, hpmount, loopback mount) are incapable of opening this file.
To create a tarball suitable for Gitian input, there are two options:

Using macOS, you can mount the dmg, and then create it with:

  $ hdiutil attach Xcode_7.3.1.dmg
  $ tar -C /Volumes/Xcode/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/ -czf MacOSX10.11.sdk.tar.gz MacOSX10.11.sdk





Alternatively, you can use 7zip and SleuthKit to extract the files one by one.
The script contrib/macdeploy/extract-osx-sdk.sh automates this. First ensure
the dmg file is in the current directory, and then run the script. You may wish
to delete the intermediate 5.hfs file and MacOSX10.11.sdk (the directory) when
you’ve confirmed the extraction succeeded.

apt-get install p7zip-full sleuthkit
contrib/macdeploy/extract-osx-sdk.sh
rm -rf 5.hfs MacOSX10.11.sdk





The Gitian descriptors build 2 sets of files: Linux tools, then Apple binaries
which are created using these tools. The build process has been designed to
avoid including the SDK’s files in Gitian’s outputs. All interim tarballs are
fully deterministic and may be freely redistributed.

genisoimage is used to create the initial DMG. It is not deterministic as-is,
so it has been patched. A system genisoimage will work fine, but it will not
be deterministic because the file-order will change between invocations.
The patch can be seen here:  theuni/osx-cross-depends [https://raw.githubusercontent.com/theuni/osx-cross-depends/master/patches/cdrtools/genisoimage.diff].
No effort was made to fix this cleanly, so it likely leaks memory badly. But
it’s only used for a single invocation, so that’s no real concern.

genisoimage cannot compress DMGs, so afterwards, the ‘dmg’ tool from the
libdmg-hfsplus project is used to compress it. There are several bugs in this
tool and its maintainer has seemingly abandoned the project. It has been forked
and is available (with fixes) here: theuni/libdmg-hfsplus [https://github.com/theuni/libdmg-hfsplus].

The ‘dmg’ tool has the ability to create DMGs from scratch as well, but this
functionality is broken. Only the compression feature is currently used.
Ideally, the creation could be fixed and genisoimage would no longer be necessary.

Background images and other features can be added to DMG files by inserting a
.DS_Store before creation. This is generated by the script
contrib/macdeploy/custom_dsstore.py.

As of OS X 10.9 Mavericks, using an Apple-blessed key to sign binaries is a
requirement in order to satisfy the new Gatekeeper requirements. Because this
private key cannot be shared, we’ll have to be a bit creative in order for the
build process to remain somewhat deterministic. Here’s how it works:


	Builders use Gitian to create an unsigned release. This outputs an unsigned
dmg which users may choose to bless and run. It also outputs an unsigned app
structure in the form of a tarball, which also contains all of the tools
that have been previously (deterministically) built in order to create a
final dmg.


	The Apple keyholder uses this unsigned app to create a detached signature,
using the script that is also included there. Detached signatures are available from this repository [https://github.com/bitcoin-core/bitcoin-detached-sigs].


	Builders feed the unsigned app + detached signature back into Gitian. It
uses the pre-built tools to recombine the pieces into a deterministic dmg.








          

      

      

    

  

  
    

    UNIX BUILD NOTES
    

    
 
  

    
      
          
            
  
UNIX BUILD NOTES

Some notes on how to build BLTG Core in Unix.


Note

Always use absolute paths to configure and compile BLTG Core and the dependencies,
For example, when specifying the path of the dependency:

../dist/configure --enable-cxx --disable-shared --with-pic --prefix=$BDB_PREFIX





Here BDB_PREFIX must be an absolute path - it is defined using $(pwd) which ensures
the usage of the absolute path.



To Build

./autogen.sh
./configure
make
make install # optional





This will build bltg-qt as well, if the dependencies are met.



Dependencies

These dependencies are required:

Library     | Purpose            | Description
————|——————–|———————-
libssl      | Crypto             | Random Number Generation, Elliptic Curve Cryptography
libboost    | Utility            | Library for threading, data structures, etc
libevent    | Networking         | OS independent asynchronous networking
libgmp      | Bignum Arithmetic  | Precision arithmetic

Optional dependencies:

Library     | Purpose          | Description
————|——————|———————-
miniupnpc   | UPnP Support     | Firewall-jumping support
libdb4.8    | Berkeley DB      | Wallet storage (only needed when wallet enabled)
qt          | GUI              | GUI toolkit (only needed when GUI enabled)
protobuf    | Payments in GUI  | Data interchange format used for payment protocol (only needed when GUI enabled)
libqrencode | QR codes in GUI  | Optional for generating QR codes (only needed when GUI enabled)
univalue    | Utility          | JSON parsing and encoding (bundled version will be used unless –with-system-univalue passed to configure)
libzmq3     | ZMQ notification | Optional, allows generating ZMQ notifications (requires ZMQ version >= 4.0.0)

For the versions used, see dependencies.md



Memory Requirements

C++ compilers are memory-hungry. It is recommended to have at least 1.5 GB of
memory available when compiling BLTG Core. On systems with less, gcc can be
tuned to conserve memory with additional CXXFLAGS:

./configure CXXFLAGS="--param ggc-min-expand=1 --param ggc-min-heapsize=32768"







Linux Distribution Specific Instructions


Ubuntu & Debian


Dependency Build Instructions

Build requirements:

sudo apt-get install build-essential libtool bsdmainutils autotools-dev autoconf pkg-config automake python3





Now, you can either build from self-compiled depends or install the required dependencies:

sudo apt-get install libssl-dev libgmp-dev libevent-dev libboost-all-dev





Note: For Ubuntu versions starting with Bionic (18.04), or Debian versions starting with Stretch, use libssl1.0-dev
above instead of libssl-dev. BLTG Core does not support the use of OpenSSL 1.1, though compilation is still possible
by passing --with-incompatible-ssl to configure (NOT RECOMMENDED!).

BerkeleyDB is required for the wallet.

For Ubuntu only: db4.8 packages are available here [https://launchpad.net/~bitcoin/+archive/bitcoin].
You can add the repository using the following command:

sudo apt-get install software-properties-common
sudo add-apt-repository ppa:bitcoin/bitcoin
sudo apt-get update
sudo apt-get install libdb4.8-dev libdb4.8++-dev





Ubuntu and Debian have their own libdb-dev and libdb++-dev packages, but these will install
BerkeleyDB 5.1 or later. This will break binary wallet compatibility with the distributed executables, which
are based on BerkeleyDB 4.8. If you do not care about wallet compatibility,
pass --with-incompatible-bdb to configure.

Otherwise, you can build from self-compiled depends (see above).

To build BLTG Core without wallet, see Disable-wallet mode

Optional (see –with-miniupnpc and –enable-upnp-default):

sudo apt-get install libminiupnpc-dev





ZMQ dependencies (provides ZMQ API):

sudo apt-get install libzmq3-dev





GUI dependencies:

If you want to build bltg-qt, make sure that the required packages for Qt development
are installed. Qt 5 is necessary to build the GUI.
To build without GUI pass --without-gui.

To build with Qt 5 you need the following:

sudo apt-get install libqt5gui5 libqt5core5a libqt5dbus5 qttools5-dev qttools5-dev-tools libprotobuf-dev protobuf-compiler





libqrencode (optional) can be installed with:

sudo apt-get install libqrencode-dev





Once these are installed, they will be found by configure and a bltg-qt executable will be
built by default.




Fedora


Dependency Build Instructions

Build requirements:

sudo dnf install which gcc-c++ libtool make autoconf automake compat-openssl10-devel libevent-devel boost-devel libdb4-devel libdb4-cxx-devel gmp-devel python3





Optional:

sudo dnf install miniupnpc-devel zeromq-devel





To build with Qt 5 you need the following:

sudo dnf install qt5-qttools-devel qt5-qtbase-devel protobuf-devel





libqrencode (optional) can be installed with:

sudo dnf install qrencode-devel









Notes

The release is built with GCC and then “strip bltgd” to strip the debug
symbols, which reduces the executable size by about 90%.



miniupnpc

miniupnpc [http://miniupnp.free.fr/] may be used for UPnP port mapping.  It can be downloaded from here [http://miniupnp.tuxfamily.org/files/].  UPnP support is compiled in and
turned off by default.  See the configure options for upnp behavior desired:

--without-miniupnpc      No UPnP support miniupnp not required
--disable-upnp-default   (the default) UPnP support turned off by default at runtime
--enable-upnp-default    UPnP support turned on by default at runtime





To build:

tar -xzvf miniupnpc-1.6.tar.gz
cd miniupnpc-1.6
make
sudo su
make install







Berkeley DB

It is recommended to use Berkeley DB 4.8. If you have to build it yourself,
you can use the installation script included in contrib/
like so:

./contrib/install_db4.sh `pwd`





from the root of the repository.

Note: You only need Berkeley DB if the wallet is enabled (see Disable-wallet mode).



Boost

If you need to build Boost yourself:

sudo su
./bootstrap.sh
./bjam install







Security

To help make your BLTG installation more secure by making certain attacks impossible to
exploit even if a vulnerability is found, binaries are hardened by default.
This can be disabled with:

Hardening Flags:

./configure --enable-hardening
./configure --disable-hardening





Hardening enables the following features:


	Position Independent Executable: Build position independent code to take advantage of Address Space Layout Randomization
offered by some kernels. Attackers who can cause execution of code at an arbitrary memory
location are thwarted if they don’t know where anything useful is located.
The stack and heap are randomly located by default, but this allows the code section to be
randomly located as well.

On an AMD64 processor where a library was not compiled with -fPIC, this will cause an error
such as: “relocation R_X86_64_32 against `……’ can not be used when making a shared object;”

To test that you have built PIE executable, install scanelf, part of paxutils, and use:

  scanelf -e ./bltgd





The output should contain:

TYPE
ET_DYN



	Non-executable Stack: If the stack is executable then trivial stack-based buffer overflow exploits are possible if
vulnerable buffers are found. By default, BLTG Core should be built with a non-executable stack
but if one of the libraries it uses asks for an executable stack or someone makes a mistake
and uses a compiler extension which requires an executable stack, it will silently build an
executable without the non-executable stack protection.

To verify that the stack is non-executable after compiling use:
scanelf -e ./bltgd

The output should contain:
STK/REL/PTL
RW- R– RW-

The STK RW- means that the stack is readable and writeable but not executable.







Disable-wallet mode

Note: This functionality is not yet completely implemented, and compilation using the below option will currently fail.

When the intention is to run only a P2P node without a wallet, BLTG Core may be compiled in
disable-wallet mode with:

./configure --disable-wallet





In this case there is no dependency on Berkeley DB 4.8.



Additional Configure Flags

A list of additional configure flags can be displayed with:

./configure --help







ARM Cross-compilation

These steps can be performed on, for example, an Ubuntu VM. The depends system
will also work on other Linux distributions, however the commands for
installing the toolchain will be different.

Make sure you install the build requirements mentioned above.
Then, install the toolchain and curl:

sudo apt-get install g++-arm-linux-gnueabihf curl





To build executables for ARM:

cd depends
make HOST=arm-linux-gnueabihf NO_QT=1
cd ..
./autogen.sh
./configure --prefix=$PWD/depends/arm-linux-gnueabihf --enable-glibc-back-compat --enable-reduce-exports LDFLAGS=-static-libstdc++
make





For further documentation on the depends system see README.md in the depends directory.





          

      

      

    

  

  
    

    WINDOWS BUILD NOTES
    

    
 
  

    
      
          
            
  
WINDOWS BUILD NOTES

Below are some notes on how to build Bltg Core for Windows.

The options known to work for building Bltg Core on Windows are:


	On Linux, using the Mingw-w64 [https://mingw-w64.org/doku.php] cross compiler tool chain. Ubuntu Bionic 18.04 is required
and is the platform used to build the Bltg Core Windows release binaries.


	On Windows, using Windows
Subsystem for Linux (WSL) [https://msdn.microsoft.com/commandline/wsl/about] and the Mingw-w64 cross compiler tool chain.




Other options which may work, but which have not been extensively tested are (please contribute instructions):


	On Windows, using a POSIX compatibility layer application such as cygwin [http://www.cygwin.com/] or msys2 [http://www.msys2.org/].


	On Windows, using a native compiler tool chain such as Visual Studio [https://www.visualstudio.com].





Installing Windows Subsystem for Linux

With Windows 10, Microsoft has released a new feature named the Windows
Subsystem for Linux (WSL) [https://msdn.microsoft.com/commandline/wsl/about]. This
feature allows you to run a bash shell directly on Windows in an Ubuntu-based
environment. Within this environment you can cross compile for Windows without
the need for a separate Linux VM or server. Note that while WSL can be installed with
other Linux variants, such as OpenSUSE, the following instructions have only been
tested with Ubuntu.

This feature is not supported in versions of Windows prior to Windows 10 or on
Windows Server SKUs. In addition, it is available only for 64-bit versions of
Windows [https://msdn.microsoft.com/en-us/commandline/wsl/install_guide].

Full instructions to install WSL are available on the above link.
To install WSL on Windows 10 with Fall Creators Update installed (version >= 16215.0) do the following:


	Enable the Windows Subsystem for Linux feature





	Open the Windows Features dialog (OptionalFeatures.exe)


	Enable ‘Windows Subsystem for Linux’


	Click ‘OK’ and restart if necessary





	Install Ubuntu





	Open Microsoft Store and search for “Ubuntu 18.04” or use this link [https://www.microsoft.com/store/productId/9N9TNGVNDL3Q]


	Click Install





	Complete Installation





	Open a cmd prompt and type “Ubuntu1804”


	Create a new UNIX user account (this is a separate account from your Windows account)




After the bash shell is active, you can follow the instructions below, starting
with the “Cross-compilation” section. Compiling the 64-bit version is
recommended, but it is possible to compile the 32-bit version.



Cross-compilation for Ubuntu and Windows Subsystem for Linux

The steps below can be performed on Ubuntu (including in a VM) or WSL. The depends system
will also work on other Linux distributions, however the commands for
installing the toolchain will be different.

First, install the general dependencies:

sudo apt update
sudo apt upgrade
sudo apt install build-essential libtool autotools-dev automake pkg-config bsdmainutils curl git





A host toolchain (build-essential) is necessary because some dependency
packages (such as protobuf) need to build host utilities that are used in the
build process.

See dependencies.md for a complete overview.

If you want to build the windows installer with make deploy you need NSIS [https://nsis.sourceforge.io/Main_Page]:

sudo apt install nsis





Acquire the source in the usual way:

git clone https://github.com/Block-Logic-Technology-Group/bltg.git
cd bltg







Building for 64-bit Windows

The first step is to install the mingw-w64 cross-compilation tool chain:

sudo apt install g++-mingw-w64-x86-64





Ubuntu Bionic 18.04 1:

sudo update-alternatives --config x86_64-w64-mingw32-g++ # Set the default mingw32 g++ compiler option to posix.





Once the toolchain is installed the build steps are common:

Note that for WSL the Bltg Core source path MUST be somewhere in the default mount file system, for
example /usr/src/bltg, AND not under /mnt/d/. If this is not the case the dependency autoconf scripts will fail.
This means you cannot use a directory that is located directly on the host Windows file system to perform the build.

Build using:

PATH=$(echo "$PATH" | sed -e 's/:\/mnt.*//g') # strip out problematic Windows %PATH% imported var
cd depends
make HOST=x86_64-w64-mingw32
cd ..
./autogen.sh # not required when building from tarball
CONFIG_SITE=$PWD/depends/x86_64-w64-mingw32/share/config.site ./configure --prefix=/
make







Building for 32-bit Windows

To build executables for Windows 32-bit, install the following dependencies:

sudo apt install g++-mingw-w64-i686 mingw-w64-i686-dev





Ubuntu Bionic 18.04 1:

sudo update-alternatives --config i686-w64-mingw32-g++  # Set the default mingw32 g++ compiler option to posix.





Build using:

PATH=$(echo "$PATH" | sed -e 's/:\/mnt.*//g') # strip out problematic Windows %PATH% imported var
cd depends
make HOST=i686-w64-mingw32
cd ..
./autogen.sh # not required when building from tarball
CONFIG_SITE=$PWD/depends/i686-w64-mingw32/share/config.site ./configure --prefix=/
make







Depends system

For further documentation on the depends system see README.md in the depends directory.



Installation

After building using the Windows subsystem it can be useful to copy the compiled
executables to a directory on the Windows drive in the same directory structure
as they appear in the release .zip archive. This can be done in the following
way. This will install to c:\workspace\bltg, for example:

make install DESTDIR=/mnt/c/workspace/bltg





You can also create an installer using:

make deploy







Footnotes

[bookmark: footnote1]1: Starting from Ubuntu Xenial 16.04, both the 32 and 64 bit Mingw-w64 packages install two different
compiler options to allow a choice between either posix or win32 threads. The default option is win32 threads which is the more
efficient since it will result in binary code that links directly with the Windows kernel32.lib. Unfortunately, the headers
required to support win32 threads conflict with some of the classes in the C++11 standard library, in particular std::mutex.
It’s not possible to build the Bltg Core code using the win32 version of the Mingw-w64 cross compilers (at least not without
modifying headers in the Bltg Core source code).





          

      

      

    

  

  
    

    Dependencies
    

    
 
  

    
      
          
            
  
Dependencies

These are the dependencies currently used by BLTG Core. You can find instructions for installing them in the build-*.md file for your platform.

| Dependency | Version used | Minimum required | CVEs | Shared | Bundled Qt library [https://doc.qt.io/qt-5/configure-options.html#third-party-libraries] |
| — | — | — | — | — | — |
| Berkeley DB | 4.8.30 [https://www.oracle.com/technetwork/database/database-technologies/berkeleydb/downloads/index.html] | 4.8.x | No |  |  |
| Boost | 1.64.0 [https://www.boost.org/users/download/] | 1.47.0 [https://github.com/bitcoin/bitcoin/pull/8920] | No |  |  |
| Clang |  | 3.3+ [https://llvm.org/releases/download.html] (C++11 support) |  |  |  |
| D-Bus | 1.10.18 [https://cgit.freedesktop.org/dbus/dbus/tree/NEWS?h=dbus-1.10] |  | No | Yes |  |
| Expat | 2.2.6 [https://libexpat.github.io/] |  | No | Yes |  |
| fontconfig | 2.12.1 [https://www.freedesktop.org/software/fontconfig/release/] |  | No | Yes |  |
| FreeType | 2.7.1 [https://download.savannah.gnu.org/releases/freetype] |  | No |  |  |
| GCC |  | 4.8+ [https://gcc.gnu.org/] (C++11 support) |  |  |  |
| HarfBuzz-NG |  |  |  |  |  |
| libevent | 2.1.8-stable [https://github.com/libevent/libevent/releases] | 2.0.22 | No |  |  |
| libjpeg |  |  |  |  | Yes [https://github.com/pivx-project/pivx/blob/master/depends/packages/qt.mk#L65] |
| libpng |  |  |  |  | Yes [https://github.com/pivx-project/pivx/blob/master/depends/packages/qt.mk#L64] |
| librsvg | |  |  |  |  |
| MiniUPnPc | 2.0.20180203 [http://miniupnp.free.fr/files] |  | No |  |  |
| OpenSSL | 1.0.1k [https://www.openssl.org/source] |  | Yes |  |  |
| GMP | 6.1.2 [https://gmplib.org/] | | No | | |
| PCRE |  |  |  |  | Yes [https://github.com/pivx-project/pivx/blob/master/depends/packages/qt.mk#L66] |
| protobuf | 2.6.1 [https://github.com/google/protobuf/releases] |  | No |  |  |
| Python (tests) |  | 3.5 [https://www.python.org/downloads] |  |  |  |
| qrencode | 3.4.4 [https://fukuchi.org/works/qrencode] |  | No |  |  |
| Qt | 5.9.7 [https://download.qt.io/official_releases/qt/] | 5.5.1 [https://github.com/bitcoin/bitcoin/issues/13478] | No |  |  |
| XCB |  |  |  |  | Yes [https://github.com/pivx-project/pivx/blob/master/depends/packages/qt.mk#L87] (Linux only) |
| xkbcommon |  |  |  |  | Yes [https://github.com/pivx-project/pivx/blob/master/depends/packages/qt.mk#L86] (Linux only) |
| ZeroMQ | 4.3.1 [https://github.com/zeromq/libzmq/releases] | 4.0.0 | No |  |  |
| zlib | 1.2.11 [https://zlib.net/] |  |  |  | No |


Controlling dependencies

Some dependencies are not needed in all configurations. The following are some factors that affect the dependency list.


Options passed to ./configure


	MiniUPnPc is not needed with  --with-miniupnpc=no.


	Berkeley DB is not needed with --disable-wallet.


	Qt is not needed with --without-gui.


	If the qrencode dependency is absent, QR support won’t be added. To force an error when that happens, pass --with-qrencode.


	ZeroMQ is needed only with the --with-zmq option.






Other


	librsvg is only needed if you need to run make deploy on (cross-compilation to) macOS.









          

      

      

    

  

  
    

    Developer Notes
    

    
 
  

    
      
          
            
  
Developer Notes

Table of Contents


	Developer Notes


	Coding Style (General)


	Coding Style (C++)


	Coding Style (Python)


	Coding Style (Doxygen-compatible comments)


	Development tips and tricks


	Compiling for debugging


	Compiling for gprof profiling


	debug.log


	Testnet and Regtest modes


	DEBUG_LOCKORDER


	Valgrind suppressions file


	Compiling for test coverage


	Performance profiling with perf






	Locking/mutex usage notes


	Threads


	Ignoring IDE/editor files






	Development guidelines


	General BLTG Core


	Wallet


	General C++


	C++ data structures


	Strings and formatting


	Variable names


	Threads and synchronization


	Scripts


	Shebang






	Source code organization


	GUI


	Subtrees


	Upgrading LevelDB


	Scripted diffs


	Git and GitHub tips


	Release notes


	RPC interface guidelines









Coding Style (General)

Various coding styles have been used during the history of the codebase,
and the result is not very consistent. However, we’re now trying to converge to
a single style, which is specified below. When writing patches, favor the new
style over attempting to mimic the surrounding style, except for move-only
commits.



Coding Style (C++)


	Indentation and whitespace rules as specified in
src/.clang-format. You can use the provided
clang-format-diff script
tool to clean up patches automatically before submission.


	Braces on new lines for classes, functions, methods.


	Braces on the same line for everything else.


	4 space indentation (no tabs) for every block except namespaces.


	No indentation for public/protected/private or for namespace.


	No extra spaces inside parenthesis; don’t do ( this )


	No space after function names; one space after if, for and while.


	If an if only has a single-statement then-clause, it can appear
on the same line as the if, without braces. In every other case,
braces are required, and the then and else clauses must appear
correctly indented on a new line.






	Symbol naming conventions. These are preferred in new code, but are not
required when doing so would need changes to significant pieces of existing
code.


	Constant names are all uppercase, and use _ to separate words.


	Class names, function names and method names are UpperCamelCase
(PascalCase). Do not prefix class names with C.


	Test suite naming convention: The Boost test suite in file
src/test/foo_tests.cpp should be named foo_tests. Test suite names
must be unique.






	Miscellaneous


	++i is preferred over i++.


	nullptr is preferred over NULL or (void*)0.


	static_assert is preferred over assert where possible. Generally; compile-time checking is preferred over run-time checking.


	enum class is preferred over enum where possible. Scoped enumerations avoid two potential pitfalls/problems with traditional C++ enumerations: implicit conversions to int, and name clashes due to enumerators being exported to the surrounding scope.








Block style example:

int g_count = 0;

namespace foo {
class Class
{
    std::string m_name;

public:
    bool Function(const std::string& s, int n)
    {
        // Comment summarising what this section of code does
        for (int i = 0; i < n; ++i) {
            int total_sum = 0;
            // When something fails, return early
            if (!Something()) return false;
            ...
            if (SomethingElse(i)) {
                total_sum += ComputeSomething(g_count);
            } else {
                DoSomething(m_name, total_sum);
            }
        }

        // Success return is usually at the end
        return true;
    }
}
} // namespace foo







Coding Style (Python)

Refer to /test/functional/README.md#style-guidelines.



Coding Style (Doxygen-compatible comments)

BLTG Core uses Doxygen [http://www.doxygen.nl/] to generate its official documentation.

Use Doxygen-compatible comment blocks for functions, methods, and fields.

For example, to describe a function use:

/**
 * ... text ...
 * @param[in] arg1    A description
 * @param[in] arg2    Another argument description
 * @pre Precondition for function...
 */
bool function(int arg1, const char *arg2)





A complete list of @xxx commands can be found at http://www.doxygen.nl/manual/commands.html.
As Doxygen recognizes the comments by the delimiters (/** and */ in this case), you don’t
need to provide any commands for a comment to be valid; just a description text is fine.

To describe a class use the same construct above the class definition:

/**
 * Alerts are for notifying old versions if they become too obsolete and
 * need to upgrade. The message is displayed in the status bar.
 * @see GetWarnings()
 */
class CAlert
{





To describe a member or variable use:

int var; //!< Detailed description after the member





or

//! Description before the member
int var;





Also OK:

///
/// ... text ...
///
bool function2(int arg1, const char *arg2)





Not OK (used plenty in the current source, but not picked up):

//
// ... text ...
//





A full list of comment syntaxes picked up by Doxygen can be found at http://www.doxygen.nl/manual/docblocks.html,
but the above styles are favored.

Documentation can be generated with make docs and cleaned up with make clean-docs. The resulting files are located in doc/doxygen/html; open index.html to view the homepage.

Before running make docs, you will need to install dependencies doxygen and dot. For example, on MacOS via Homebrew:

brew install doxygen







Development tips and tricks


Compiling for debugging

Run configure with --enable-debug to add additional compiler flags that
produce better debugging builds.



Compiling for gprof profiling

Run configure with the --enable-gprof option, then make.



debug.log

If the code is behaving strangely, take a look in the debug.log file in the data directory;
error and debugging messages are written there.

The -debug=... command-line option controls debugging; running with just -debug or -debug=1 will turn
on all categories (and give you a very large debug.log file).

The Qt code routes qDebug() output to debug.log under category “qt”: run with -debug=qt
to see it.



Testnet and Regtest modes

Run with the -testnet option to run with “play BLTGs (tBLTG)” on the test network, if you
are testing multi-machine code that needs to operate across the internet.

If you are testing something that can run on one machine, run with the -regtest option.
In regression test mode, blocks can be created on-demand; see test/functional/ for tests
that run in -regtest mode.



DEBUG_LOCKORDER

BLTG Core is a multi-threaded application, and deadlocks or other
multi-threading bugs can be very difficult to track down. The --enable-debug
configure option adds -DDEBUG_LOCKORDER to the compiler flags. This inserts
run-time checks to keep track of which locks are held, and adds warnings to the
debug.log file if inconsistencies are detected.



Valgrind suppressions file

Valgrind is a programming tool for memory debugging, memory leak detection, and
profiling. The repo contains a Valgrind suppressions file
(valgrind.supp [https://github.com/Block-Logic-Technology-Group/bltg/blob/master/contrib/valgrind.supp])
which includes known Valgrind warnings in our dependencies that cannot be fixed
in-tree. Example use:

$ valgrind --suppressions=contrib/valgrind.supp src/test/test_bltg
$ valgrind --suppressions=contrib/valgrind.supp --leak-check=full \
      --show-leak-kinds=all src/test/test_bltg --log_level=test_suite
$ valgrind -v --leak-check=full src/bltgd -printtoconsole







Compiling for test coverage

LCOV can be used to generate a test coverage report based upon make check
execution. LCOV must be installed on your system (e.g. the lcov package
on Debian/Ubuntu).

To enable LCOV report generation during test runs:

./configure --enable-lcov
make
make cov

# A coverage report will now be accessible at `./test_bltg.coverage/index.html`.








Locking/mutex usage notes

The code is multi-threaded, and uses mutexes and the
LOCK and TRY_LOCK macros to protect data structures.

Deadlocks due to inconsistent lock ordering (thread 1 locks cs_main and then
cs_wallet, while thread 2 locks them in the opposite order: result, deadlock
as each waits for the other to release its lock) are a problem. Compile with
-DDEBUG_LOCKORDER (or use --enable-debug) to get lock order inconsistencies
reported in the debug.log file.

Re-architecting the core code so there are better-defined interfaces
between the various components is a goal, with any necessary locking
done by the components (e.g. see the self-contained CKeyStore class
and its cs_KeyStore lock for example).



Threads


	ThreadScriptCheck : Verifies block scripts.


	ThreadImport : Loads blocks from blk*.dat files or bootstrap.dat.


	StartNode : Starts other threads.


	ThreadDNSAddressSeed : Loads addresses of peers from the DNS.


	ThreadMapPort : Universal plug-and-play startup/shutdown


	ThreadSocketHandler : Sends/Receives data from peers on port 8333.


	ThreadOpenAddedConnections : Opens network connections to added nodes.


	ThreadOpenConnections : Initiates new connections to peers.


	ThreadMessageHandler : Higher-level message handling (sending and receiving).


	DumpAddresses : Dumps IP addresses of nodes to peers.dat.


	ThreadFlushWalletDB : Close the wallet.dat file if it hasn’t been used in 500ms.


	ThreadRPCServer : Remote procedure call handler, listens on port 8332 for connections and services them.


	BitcoinMiner : Generates bitcoins (if wallet is enabled).


	Shutdown : Does an orderly shutdown of everything.






Ignoring IDE/editor files

In closed-source environments in which everyone uses the same IDE it is common
to add temporary files it produces to the project-wide .gitignore file.

However, in open source software such as BLTG Core, where everyone uses
their own editors/IDE/tools, it is less common. Only you know what files your
editor produces and this may change from version to version. The canonical way
to do this is thus to create your local gitignore. Add this to ~/.gitconfig:

[core]
        excludesfile = /home/.../.gitignore_global





(alternatively, type the command git config --global core.excludesfile ~/.gitignore_global
on a terminal)

Then put your favourite tool’s temporary filenames in that file, e.g.

# NetBeans
nbproject/





Another option is to create a per-repository excludes file .git/info/exclude.
These are not committed but apply only to one repository.

If a set of tools is used by the build system or scripts the repository (for
example, lcov) it is perfectly acceptable to add its files to .gitignore
and commit them.




Development guidelines

A few non-style-related recommendations for developers, as well as points to
pay attention to for reviewers of BLTG Core code.


General BLTG Core


	New features should be exposed on RPC first, then can be made available in the GUI


	Rationale: RPC allows for better automatic testing. The test suite for
the GUI is very limited






	Make sure pull requests pass Travis CI before merging


	Rationale: Makes sure that they pass thorough testing, and that the tester will keep passing
on the master branch. Otherwise all new pull requests will start failing the tests, resulting in
confusion and mayhem


	Explanation: If the test suite is to be updated for a change, this has to
be done first










Wallet


	Make sure that no crashes happen with run-time option -disablewallet.


	Rationale: In RPC code that conditionally uses the wallet (such as
validateaddress) it is easy to forget that global pointer pwalletMain
can be nullptr. See test/functional/disablewallet.py for functional tests
exercising the API with -disablewallet






	Include db_cxx.h (BerkeleyDB header) only when ENABLE_WALLET is set


	Rationale: Otherwise compilation of the disable-wallet build will fail in environments without BerkeleyDB










General C++

For general C++ guidelines, you may refer to the C++ Core
Guidelines [https://isocpp.github.io/CppCoreGuidelines/].

Common misconceptions are clarified in those sections:


	Passing (non-)fundamental types in the C++ Core
Guideline [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-conventional]


	Assertions should not have side-effects


	Rationale: Even though the source code is set to refuse to compile
with assertions disabled, having side-effects in assertions is unexpected and
makes the code harder to understand






	If you use the .h, you must link the .cpp


	Rationale: Include files define the interface for the code in implementation files. Including one but
not linking the other is confusing. Please avoid that. Moving functions from
the .h to the .cpp should not result in build errors






	Use the RAII (Resource Acquisition Is Initialization) paradigm where possible. For example by using
unique_ptr for allocations in a function.


	Rationale: This avoids memory and resource leaks, and ensures exception safety










C++ data structures


	Never use the std::map [] syntax when reading from a map, but instead use .find()


	Rationale: [] does an insert (of the default element) if the item doesn’t
exist in the map yet. This has resulted in memory leaks in the past, as well as
race conditions (expecting read-read behavior). Using [] is fine for writing to a map






	Do not compare an iterator from one data structure with an iterator of
another data structure (even if of the same type)


	Rationale: Behavior is undefined. In C++ parlor this means “may reformat
the universe”, in practice this has resulted in at least one hard-to-debug crash bug






	Watch out for out-of-bounds vector access. &vch[vch.size()] is illegal,
including &vch[0] for an empty vector. Use vch.data() and vch.data() + vch.size() instead.


	Vector bounds checking is only enabled in debug mode. Do not rely on it


	Initialize all non-static class members where they are defined.
If this is skipped for a good reason (i.e., optimization on the critical
path), add an explicit comment about this


	Rationale: Ensure determinism by avoiding accidental use of uninitialized
values. Also, static analyzers balk about this.
Initializing the members in the declaration makes it easy to
spot uninitialized ones.








class A
{
    uint32_t m_count{0};
}






	By default, declare single-argument constructors explicit.


	Rationale: This is a precaution to avoid unintended conversions that might
arise when single-argument constructors are used as implicit conversion
functions.






	Use explicitly signed or unsigned chars, or even better uint8_t and
int8_t. Do not use bare char unless it is to pass to a third-party API.
This type can be signed or unsigned depending on the architecture, which can
lead to interoperability problems or dangerous conditions such as
out-of-bounds array accesses


	Prefer explicit constructions over implicit ones that rely on ‘magical’ C++ behavior


	Rationale: Easier to understand what is happening, thus easier to spot mistakes, even for those
that are not language lawyers










Strings and formatting


	Be careful of LogPrint versus LogPrintf. LogPrint takes a category argument, LogPrintf does not.


	Rationale: Confusion of these can result in runtime exceptions due to
formatting mismatch, and it is easy to get wrong because of subtly similar naming






	Use std::string, avoid C string manipulation functions


	Rationale: C++ string handling is marginally safer, less scope for
buffer overflows and surprises with \0 characters. Also some C string manipulations
tend to act differently depending on platform, or even the user locale






	Use ParseInt32, ParseInt64, ParseUInt32, ParseUInt64, ParseDouble from utilstrencodings.h for number parsing


	Rationale: These functions do overflow checking, and avoid pesky locale issues.






	Avoid using locale dependent functions if possible. You can use the provided
lint-locale-dependence.sh
to check for accidental use of locale dependent functions.


	Rationale: Unnecessary locale dependence can cause bugs that are very tricky to isolate and fix.


	These functions are known to be locale dependent:
alphasort, asctime, asprintf, atof, atoi, atol, atoll, atoq,
btowc, ctime, dprintf, fgetwc, fgetws, fprintf, fputwc,
fputws, fscanf, fwprintf, getdate, getwc, getwchar, isalnum,
isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isspace, isupper, iswalnum, iswalpha, iswblank,
iswcntrl, iswctype, iswdigit, iswgraph, iswlower, iswprint,
iswpunct, iswspace, iswupper, iswxdigit, isxdigit, mblen,
mbrlen, mbrtowc, mbsinit, mbsnrtowcs, mbsrtowcs, mbstowcs,
mbtowc, mktime, putwc, putwchar, scanf, snprintf, sprintf,
sscanf, stoi, stol, stoll, strcasecmp, strcasestr, strcoll,
strfmon, strftime, strncasecmp, strptime, strtod, strtof,
strtoimax, strtol, strtold, strtoll, strtoq, strtoul,
strtoull, strtoumax, strtouq, strxfrm, swprintf, tolower,
toupper, towctrans, towlower, towupper, ungetwc, vasprintf,
vdprintf, versionsort, vfprintf, vfscanf, vfwprintf, vprintf,
vscanf, vsnprintf, vsprintf, vsscanf, vswprintf, vwprintf,
wcrtomb, wcscasecmp, wcscoll, wcsftime, wcsncasecmp, wcsnrtombs,
wcsrtombs, wcstod, wcstof, wcstoimax, wcstol, wcstold,
wcstoll, wcstombs, wcstoul, wcstoull, wcstoumax, wcswidth,
wcsxfrm, wctob, wctomb, wctrans, wctype, wcwidth, wprintf






	For strprintf, LogPrint, LogPrintf formatting characters don’t need size specifiers


	Rationale: BLTG Core uses tinyformat, which is type safe. Leave them out to avoid confusion










Variable names

Although the shadowing warning (-Wshadow) is not enabled by default (it prevents issues rising
from using a different variable with the same name),
please name variables so that their names do not shadow variables defined in the source code.

E.g. in member initializers, prepend _ to the argument name shadowing the
member name:

class AddressBookPage
{
    Mode m_mode;
}

AddressBookPage::AddressBookPage(Mode _mode)
    : m_mode(_mode)
...





When using nested cycles, do not name the inner cycle variable the same as in
upper cycle etc.



Threads and synchronization


	Build and run tests with -DDEBUG_LOCKORDER to verify that no potential
deadlocks are introduced. This is defined by default when configuring
with --enable-debug


	When using LOCK/TRY_LOCK be aware that the lock exists in the context of
the current scope, so surround the statement and the code that needs the lock
with braces

OK:





{
    TRY_LOCK(cs_vNodes, lockNodes);
    ...
}





Wrong:

TRY_LOCK(cs_vNodes, lockNodes);
{
    ...
}







Scripts


Shebang


	Use #!/usr/bin/env bash instead of obsolete #!/bin/bash.


	Rationale [https://github.com/dylanaraps/pure-bash-bible#shebang]:

#!/bin/bash assumes it is always installed to /bin/ which can cause issues;

#!/usr/bin/env bash searches the user’s PATH to find the bash binary.





OK:





#!/usr/bin/env bash





Wrong:

#!/bin/bash








Source code organization


	Implementation code should go into the .cpp file and not the .h, unless necessary due to template usage or
when performance due to inlining is critical


	Rationale: Shorter and simpler header files are easier to read, and reduce compile time






	Use only the lowercase alphanumerics (a-z0-9), underscore (_) and hyphen (-) in source code filenames.


	Rationale: grep:ing and auto-completing filenames is easier when using a consistent
naming pattern. Potential problems when building on case-insensitive filesystems are
avoided when using only lowercase characters in source code filenames.






	Every .cpp and .h file should #include every header file it directly uses classes, functions or other
definitions from, even if those headers are already included indirectly through other headers.


	Rationale: Excluding headers because they are already indirectly included results in compilation
failures when those indirect dependencies change. Furthermore, it obscures what the real code
dependencies are.






	Don’t import anything into the global namespace (using namespace ...). Use
fully specified types such as std::string.


	Rationale: Avoids symbol conflicts






	Terminate namespaces with a comment (// namespace mynamespace). The comment
should be placed on the same line as the brace closing the namespace, e.g.




namespace mynamespace {
...
} // namespace mynamespace

namespace {
...
} // namespace






	Rationale: Avoids confusion about the namespace context


	Use include guards to avoid the problem of double inclusion. The header file
foo/bar.h should use the include guard identifier BITCOIN_FOO_BAR_H, e.g.




#ifndef BITCOIN_FOO_BAR_H
#define BITCOIN_FOO_BAR_H
...
#endif // BITCOIN_FOO_BAR_H







GUI


	Do not display or manipulate dialogs in model code (classes *Model)


	Rationale: Model classes pass through events and data from the core, they
should not interact with the user. That’s where View classes come in. The converse also
holds: try to not directly access core data structures from Views.










Subtrees

Several parts of the repository are subtrees of software maintained elsewhere.

Some of these are maintained by active developers of Bitcoin Core, in which case changes should probably go
directly upstream without being PRed directly against the project.  They will be merged back in the next
subtree merge.

Others are external projects without a tight relationship with our project.  Changes to these should also
be sent upstream but bugfixes may also be prudent to PR against BLTG Core so that they can be integrated
quickly.  Cosmetic changes should be purely taken upstream.

There is a tool in test/lint/git-subtree-check.sh to check a subtree directory for consistency with
its upstream repository.

Current subtrees include:


	src/leveldb


	Upstream at https://github.com/google/leveldb ; Maintained by Google, but
open important PRs to Core to avoid delay.


	Note: Follow the instructions in Upgrading LevelDB when
merging upstream changes to the LevelDB subtree.






	src/libsecp256k1


	Upstream at https://github.com/bitcoin-core/secp256k1/ ; actively maintained by Core contributors.






	src/univalue


	Upstream at https://github.com/bitcoin-core/univalue ; actively maintained by Core contributors, deviates from upstream https://github.com/jgarzik/univalue










Upgrading LevelDB

Extra care must be taken when upgrading LevelDB. This section explains issues
you must be aware of.


File Descriptor Counts

In most configurations we use the default LevelDB value for max_open_files,
which is 1000 at the time of this writing. If LevelDB actually uses this many
file descriptors it will cause problems with BLTG’s select() loop, because
it may cause new sockets to be created where the fd value is >= 1024. For this
reason, on 64-bit Unix systems we rely on an internal LevelDB optimization that
uses mmap() + close() to open table files without actually retaining
references to the table file descriptors. If you are upgrading LevelDB, you must
sanity check the changes to make sure that this assumption remains valid.

In addition to reviewing the upstream changes in env_posix.cc, you can use lsof to
check this. For example, on Linux this command will show open .ldb file counts:

$ lsof -p $(pidof bltgd) |\
    awk 'BEGIN { fd=0; mem=0; } /ldb$/ { if ($4 == "mem") mem++; else fd++ } END { printf "mem = %s, fd = %s\n", mem, fd}'
mem = 119, fd = 0





The mem value shows how many files are mmap’ed, and the fd value shows you
many file descriptors these files are using. You should check that fd is a
small number (usually 0 on 64-bit hosts).

See the notes in the SetMaxOpenFiles() function in dbwrapper.cc for more
details.



Consensus Compatibility

It is possible for LevelDB changes to inadvertently change consensus
compatibility between nodes. This happened in Bitcoin 0.8 (when LevelDB was
first introduced). When upgrading LevelDB you should review the upstream changes
to check for issues affecting consensus compatibility.

For example, if LevelDB had a bug that accidentally prevented a key from being
returned in an edge case, and that bug was fixed upstream, the bug “fix” would
be an incompatible consensus change. In this situation the correct behavior
would be to revert the upstream fix before applying the updates to Bitcoin’s
copy of LevelDB. In general you should be wary of any upstream changes affecting
what data is returned from LevelDB queries.




Scripted diffs

For reformatting and refactoring commits where the changes can be easily automated using a bash script, we use
scripted-diff commits. The bash script is included in the commit message and our Travis CI job checks that
the result of the script is identical to the commit. This aids reviewers since they can verify that the script
does exactly what it’s supposed to do. It is also helpful for rebasing (since the same script can just be re-run
on the new master commit).

To create a scripted-diff:


	start the commit message with scripted-diff: (and then a description of the diff on the same line)


	in the commit message include the bash script between lines containing just the following text:


	-BEGIN VERIFY SCRIPT-


	-END VERIFY SCRIPT-








The scripted-diff is verified by the tool test/lint/commit-script-check.sh. The tool’s default behavior when supplied
with a commit is to verify all scripted-diffs from the beginning of time up to said commit. Internally, the tool passes
the first supplied argument to git rev-list --reverse to determine which commits to verify script-diffs for, ignoring
commits that don’t conform to the commit message format described above.

For development, it might be more convenient to verify all scripted-diffs in a range A..B, for example:

test/lint/commit-script-check.sh origin/master..HEAD





Commit bb81e173 [https://github.com/bitcoin/bitcoin/commit/bb81e173] is an example of a scripted-diff.



Git and GitHub tips


	For resolving merge/rebase conflicts, it can be useful to enable diff3 style using
git config merge.conflictstyle diff3. Instead of

  <<<
  yours
  ===
  theirs
  >>>





you will see

  <<<
  yours
  |||
  original
  ===
  theirs
  >>>





This may make it much clearer what caused the conflict. In this style, you can often just look
at what changed between original and theirs, and mechanically apply that to yours (or the other way around).



	When reviewing patches which change indentation in C++ files, use git diff -w and git show -w. This makes
the diff algorithm ignore whitespace changes. This feature is also available on github.com, by adding ?w=1
at the end of any URL which shows a diff.


	When reviewing patches that change symbol names in many places, use git diff --word-diff. This will instead
of showing the patch as deleted/added lines, show deleted/added words.


	When reviewing patches that move code around, try using
git diff --patience commit~:old/file.cpp commit:new/file/name.cpp, and ignoring everything except the
moved body of code which should show up as neither + or - lines. In case it was not a pure move, this may
even work when combined with the -w or --word-diff options described above.


	When looking at other’s pull requests, it may make sense to add the following section to your .git/config
file:

  [remote "upstream-pull"]
          fetch = +refs/pull/*:refs/remotes/upstream-pull/*
          url = git@github.com:Block-Logic-Technology-Group/bltg.git





This will add an upstream-pull remote to your git repository, which can be fetched using git fetch --all
or git fetch upstream-pull. Afterwards, you can use upstream-pull/NUMBER/head in arguments to git show,
git checkout and anywhere a commit id would be acceptable to see the changes from pull request NUMBER.







Release notes

Release notes should be written for any PR that:


	introduces a notable new feature


	fixes a significant bug


	changes an API or configuration model


	makes any other visible change to the end-user experience.




Release notes should be added to a PR-specific release note file at
/doc/release-notes-<PR number>.md to avoid conflicts between multiple PRs.
All release-notes* files are merged into a single
/doc/release-notes.md file prior to the release.



RPC interface guidelines

A few guidelines for introducing and reviewing new RPC interfaces:


	Method naming: use consecutive lower-case names such as getrawtransaction and submitblock


	Rationale: Consistency with existing interface.






	Argument naming: use snake case fee_delta (and not, e.g. camel case feeDelta)


	Rationale: Consistency with existing interface.






	Use the JSON parser for parsing, don’t manually parse integers or strings from
arguments unless absolutely necessary.


	Rationale: Introduces hand-rolled string manipulation code at both the caller and callee sites,
which is error prone, and it is easy to get things such as escaping wrong.
JSON already supports nested data structures, no need to re-invent the wheel.


	Exception: AmountFromValue can parse amounts as string. This was introduced because many JSON
parsers and formatters hard-code handling decimal numbers as floating point
values, resulting in potential loss of precision. This is unacceptable for
monetary values. Always use AmountFromValue and ValueFromAmount when
inputting or outputting monetary values. The only exceptions to this are
prioritisetransaction and getblocktemplate because their interface
is specified as-is in BIP22.






	Missing arguments and ‘null’ should be treated the same: as default values. If there is no
default value, both cases should fail in the same way. The easiest way to follow this
guideline is detect unspecified arguments with params[x].isNull() instead of
params.size() <= x. The former returns true if the argument is either null or missing,
while the latter returns true if is missing, and false if it is null.


	Rationale: Avoids surprises when switching to name-based arguments. Missing name-based arguments
are passed as ‘null’.






	Try not to overload methods on argument type. E.g. don’t make getblock(true) and getblock("hash")
do different things.


	Rationale: This is impossible to use with bltg-cli, and can be surprising to users.


	Exception: Some RPC calls can take both an int and bool, most notably when a bool was switched
to a multi-value, or due to other historical reasons. Always have false map to 0 and
true to 1 in this case.






	Don’t forget to fill in the argument names correctly in the RPC command table.


	Rationale: If not, the call can not be used with name-based arguments.






	Set okSafeMode in the RPC command table to a sensible value: safe mode is when the
blockchain is regarded to be in a confused state, and the client deems it unsafe to
do anything irreversible such as send. Anything that just queries should be permitted.


	Rationale: Troubleshooting a node in safe mode is difficult if half the
RPCs don’t work.






	Add every non-string RPC argument (method, idx, name) to the table vRPCConvertParams in rpc/client.cpp.


	Rationale: bltg-cli and the GUI debug console use this table to determine how to
convert a plaintext command line to JSON. If the types don’t match, the method can be unusable
from there.






	A RPC method must either be a wallet method or a non-wallet method. Do not
introduce new methods that differ in behavior based on presence of a wallet.


	Rationale: as well as complicating the implementation and interfering
with the introduction of multi-wallet, wallet and non-wallet code should be
separated to avoid introducing circular dependencies between code units.






	Try to make the RPC response a JSON object.


	Rationale: If a RPC response is not a JSON object then it is harder to avoid API breakage if
new data in the response is needed.






	Be aware of RPC method aliases and generally avoid registering the same
callback function pointer for different RPCs.


	Rationale: RPC methods registered with the same function pointer will be
considered aliases and only the first method name will show up in the
help rpc command list.


	Exception: Using RPC method aliases may be appropriate in cases where a
new RPC is replacing a deprecated RPC, to avoid both RPCs confusingly
showing up in the command list.












          

      

      

    

  

  
    

    Expectations for DNS Seed operators
    

    
 
  

    
      
          
            
  
Expectations for DNS Seed operators

BLTG Core attempts to minimize the level of trust in DNS seeds,
but DNS seeds still pose a small amount of risk for the network.
As such, DNS seeds must be run by entities which have some minimum
level of trust within the BLTG community.

Other implementations of BLTG software may also use the same
seeds and may be more exposed. In light of this exposure, this
document establishes some basic expectations for operating dnsseeds.


	A DNS seed operating organization or person is expected to follow good
host security practices, maintain control of applicable infrastructure,
and not sell or transfer control of the DNS seed. Any hosting services
contracted by the operator are equally expected to uphold these expectations.


	The DNS seed results must consist exclusively of fairly selected and
functioning BLTG nodes from the public network to the best of the
operators understanding and capability.


	For the avoidance of doubt, the results may be randomized but must not
single-out any group of hosts to receive different results unless due to an
urgent technical necessity and disclosed.


	The results may not be served with a DNS TTL of less than one minute.


	Any logging of DNS queries should be only that which is necessary
for the operation of the service or urgent health of the BLTG
network and must not be retained longer than necessary nor disclosed
to any third party.


	Information gathered as a result of the operators node-spidering
(not from DNS queries) may be freely published or retained, but only
if this data was not made more complete by biasing node connectivity
(a violation of expectation (1)).


	Operators are encouraged, but not required, to publicly document the
details of their operating practices.


	A reachable email contact address must be published for inquiries
related to the DNS seed operation.




If these expectations cannot be satisfied the operator should
discontinue providing services and contact the active BLTG
Core development team as well as posting on the
BLTG Forum [https://bock-logic.com].

Behavior outside of these expectations may be reasonable in some
situations but should be discussed in public in advance.


See also


	bitcoin-seeder [https://github.com/sipa/bitcoin-seeder] is a reference implementation of a DNS seed.








          

      

      

    

  

  
    

    <no title>
    

    
 
  

    
      
          
            
  Filename            | Description
——————–|—————————————————————————————————————————-
banlist.dat         | stores the IPs/Subnets of banned nodes
bltg.conf           | contains configuration settings for bltgd or bltg-qt
bltgd.pid           | stores the process id of bltgd while running
blocks/blk000??.dat | block data (custom, 128 MiB per file); since 0.8.0
blocks/rev000??.dat | block undo data (custom); since 0.8.0 (format changed since pre-0.8)
blocks/index/*      | block index (LevelDB); since 0.8.0
chainstate/*        | blockchain state database (LevelDB); since 0.8.0
database/*          | BDB database environment; only used for wallet since 0.8.0; moved to wallets/ directory on new installs since 0.16.0
db.log              | wallet database log file; moved to wallets/ directory on new installs since 0.16.0
debug.log           | contains debug information and general logging generated by bltgd or bltg-qt
fee_estimates.dat   | stores statistics used to estimate minimum transaction fees and priorities required for confirmation; since 0.10.0
budget.dat          | stores data for budget objects
masternode.conf     | contains configuration settings for remote masternodes
mncache.dat         | stores data for masternode list
mnpayments.dat      | stores data for masternode payments
peers.dat           | peer IP address database (custom format); since 0.7.0
wallet.dat          | personal wallet (BDB) with keys and transactions; moved to wallets/ directory on new installs since 0.16.0
.cookie             | session RPC authentication cookie (written at start when cookie authentication is used, deleted on shutdown): since 0.12.0
onion_private_key   | cached Tor hidden service private key for -listenonion: since 0.12.0



          

      

      

    

  

  
    

    Gitian building
    

    
 
  

    
      
          
            
  
Gitian building

Setup instructions for a gitian build of BLTG using a Debian VM or physical system.

Gitian is the deterministic build process that is used to build the BLTG
Core executables. It provides a way to be reasonably sure that the
executables are really built from source on GitHub. It also makes sure that
the same, tested dependencies are used and statically built into the executable.

Multiple developers build the source code by following a specific descriptor
(”recipe”), cryptographically sign the result, and upload the resulting signature.
These results are compared and only if they match, the build is accepted and uploaded
to bltg-crypto.com.

More independent gitian builders are needed, which is why I wrote this
guide. It is preferred to follow these steps yourself instead of using someone else’s
VM image to avoid ‘contaminating’ the build.


Table of Contents


	Create a new VirtualBox VM


	Connecting to the VM


	Setting up Debian for gitian building


	Installing gitian


	Setting up gitian images


	Getting and building the inputs


	Building BLTG


	Building an alternative repository


	Signing externally


	Uploading signatures






Preparing the Gitian builder host

The first step is to prepare the host environment that will be used to perform the Gitian builds.
This guide explains how to set up the environment, and how to start the builds.

Debian Linux was chosen as the host distribution because it has a lightweight install (in contrast to Ubuntu) and is readily available.
Any kind of virtualization can be used, for example:


	VirtualBox [https://www.virtualbox.org/], covered by this guide


	KVM [http://www.linux-kvm.org/page/Main_Page]


	LXC [https://linuxcontainers.org/], see also Gitian host docker container [https://github.com/gdm85/tenku/tree/master/docker/gitian-bitcoin-host/README].




You can also install on actual hardware instead of using virtualization.



Create a new VirtualBox VM

In the VirtualBox GUI click “Create” and choose the following parameters in the wizard:

[image: _images/create_vm_page1.png]


	Type: Linux, Debian (64 bit)




[image: _images/create_vm_memsize.png]


	Memory Size: at least 1024MB, anything lower will really slow the build down




[image: _images/create_vm_hard_drive.png]


	Hard Drive: Create a virtual hard drive now




[image: _images/create_vm_hard_drive_file_type.png]


	Hard Drive file type: Use the default, VDI (VirtualBox Disk Image)




[image: _images/create_vm_storage_physical_hard_drive.png]


	Storage on Physical hard drive: Dynamically Allocated




[image: _images/create_vm_file_location_size.png]


	Disk size: at least 40GB; as low as 20GB may be possible, but better to err on the safe side


	Push the Create button




Get the Debian 7.8 net installer [http://cdimage.debian.org/cdimage/archive/7.8.0/amd64/iso-cd/debian-7.8.0-amd64-netinst.iso] (a more recent minor version should also work, see also Debian Network installation [https://www.debian.org/CD/netinst/]).
This DVD image can be validated using a SHA256 hashing tool, for example on
Unixy OSes by entering the following in a terminal:

echo "b712a141bc60269db217d3b3e456179bd6b181645f90e4aac9c42ed63de492e9  debian-7.4.0-amd64-netinst.iso" | sha256sum -c
# (must return OK)





After creating the VM, we need to configure it.


	Click the Settings button, then go to the Network tab. Adapter 1 should be attacked to NAT.




[image: _images/network_settings.png]


	Click Advanced, then Port Forwarding. We want to set up a port through where we can reach the VM to get files in and out.


	Create a new rule by clicking the plus icon.




[image: _images/port_forwarding_rules.png]


	Set up the new rule the following way:


	Name: SSH


	Protocol: TCP


	Leave Host IP empty


	Host Port: 22222


	Leave Guest IP empty


	Guest Port: 22






	Click Ok twice to save.




Then start the VM. On the first launch you will be asked for a CD or DVD image. Choose the downloaded iso.

[image: _images/select_startup_disk.png]



Installing Debian

In this section it will be explained how to install Debian on the newly created VM.


	Choose the non-graphical installer.  We do not need the graphical environment, it will only increase installation time and disk usage.




[image: _images/debian_install_1_boot_menu.png]

Note: Navigation in the Debian installer: To keep a setting at the default
and proceed, just press Enter. To select a different button, press Tab.


	Choose locale and keyboard settings (doesn’t matter, you can just go with the defaults or select your own information)




[image: _images/debian_install_2_select_a_language.png]
[image: _images/debian_install_3_select_location.png]
[image: _images/debian_install_4_configure_keyboard.png]


	The VM will detect network settings using DHCP, this should all proceed automatically


	Configure the network:


	System name debian.


	Leave domain name empty.








[image: _images/debian_install_5_configure_the_network.png]


	Choose a root password and enter it twice (remember it for later)




[image: _images/debian_install_6a_set_up_root_password.png]


	Name the new user debian (the full name doesn’t matter, you can leave it empty)




[image: _images/debian_install_7_set_up_user_fullname.png]
[image: _images/debian_install_8_set_up_username.png]


	Choose a user password and enter it twice (remember it for later)




[image: _images/debian_install_9_user_password.png]


	The installer will set up the clock using a time server, this process should be automatic


	Set up the clock: choose a time zone (depends on the locale settings that you picked earlier; specifics don’t matter)




[image: _images/debian_install_10_configure_clock.png]


	Disk setup


	Partitioning method: Guided - Use the entire disk








[image: _images/debian_install_11_partition_disks.png]


	Select disk to partition: SCSI1 (0,0,0)




[image: _images/debian_install_12_choose_disk.png]


	Partitioning scheme: All files in one partition




[image: _images/debian_install_13_partition_scheme.png]


	Finish partitioning and write changes to disk -> Yes (Tab, Enter to select the Yes button)




[image: _images/debian_install_14_finish.png]
[image: _images/debian_install_15_write_changes.png]


	The base system will be installed, this will take a minute or so


	Choose a mirror (any will do)




[image: _images/debian_install_16_choose_a_mirror.png]


	Enter proxy information (unless you are on an intranet, you can leave this empty)




[image: _images/debian_install_18_proxy_settings.png]


	Wait a bit while ‘Select and install software’ runs


	Participate in popularity contest -> No


	Choose software to install. We need just the base system.




[image: _images/debian_install_19_software_selection.png]


	Make sure only ‘SSH server’ and ‘Standard System Utilities’ are checked


	Uncheck ‘Debian Desktop Environment’ and ‘Print Server’




[image: _images/debian_install_20_install_grub.png]


	Install the GRUB boot loader to the master boot record? -> Yes




[image: _images/debian_install_21_finish_installation.png]


	Installation Complete -> Continue


	After installation, the VM will reboot and you will have a working Debian VM. Congratulations!






Connecting to the VM

After the VM has booted you can connect to it using SSH, and files can be copied from and to the VM using a SFTP utility.
Connect to localhost, port 22222 (or the port configured when installing the VM).
On Windows you can use putty[1] and WinSCP[2].

For example to connect as root from a Linux command prompt use

$ ssh root@localhost -p 22222
The authenticity of host '[localhost]:22222 ([127.0.0.1]:22222)' can't be established.
ECDSA key fingerprint is 8e:71:f9:5b:62:46:de:44:01:da:fb:5f:34:b5:f2:18.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '[localhost]:22222' (ECDSA) to the list of known hosts.
root@localhost's password: (enter root password configured during install)
Linux debian 3.2.0-4-amd64 #1 SMP Debian 3.2.54-2 x86_64
root@debian:~#





Replace root with debian to log in as user.

[1] http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
[2] http://winscp.net/eng/index.php



Setting up Debian for gitian building

In this section we will be setting up the Debian installation for Gitian building.

First we need to log in as root to set up dependencies and make sure that our
user can use the sudo command. Type/paste the following in the terminal:

apt-get install make git ruby sudo apt-cacher-ng qemu-utils debootstrap lxc python-cheetah parted kpartx bridge-utils
adduser debian sudo





When you get a colorful screen with a question about the ‘LXC directory’, just
go with the default (/var/lib/lxc).

Then set up LXC and the rest with the following, which is a complex jumble of settings and workarounds:

# the version of lxc-start in Debian 7.4 needs to run as root, so make sure
# that the build script can exectute it without providing a password
echo "%sudo ALL=NOPASSWD: /usr/bin/lxc-start" > /etc/sudoers.d/gitian-lxc
# add cgroup for LXC
echo "cgroup  /sys/fs/cgroup  cgroup  defaults  0   0" >> /etc/fstab
# make /etc/rc.local script that sets up bridge between guest and host
echo '#!/bin/sh -e' > /etc/rc.local
echo 'brctl addbr br0' >> /etc/rc.local
echo 'ifconfig br0 10.0.3.2/24 up' >> /etc/rc.local
echo 'exit 0' >> /etc/rc.local
# make sure that USE_LXC is always set when logging in as debian,
# and configure LXC IP addresses
echo 'export USE_LXC=1' >> /home/debian/.profile
echo 'export GITIAN_HOST_IP=10.0.3.2' >> /home/debian/.profile
echo 'export LXC_GUEST_IP=10.0.3.5' >> /home/debian/.profile
reboot





At the end the VM is rebooted to make sure that the changes take effect. The steps in this
section need only to be performed once.



Installing gitian

Re-login as the user debian that was created during installation.
The rest of the steps in this guide will be performed as that user.

There is no python-vm-builder package in Debian, so we need to install it from source ourselves,

wget http://archive.ubuntu.com/ubuntu/pool/universe/v/vm-builder/vm-builder_0.12.4+bzr489.orig.tar.gz
echo "ec12e0070a007989561bfee5862c89a32c301992dd2771c4d5078ef1b3014f03  vm-builder_0.12.4+bzr489.orig.tar.gz" | sha256sum -c
# (verification -- must return OK)
tar -zxvf vm-builder_0.12.4+bzr489.orig.tar.gz
cd vm-builder-0.12.4+bzr489
sudo python setup.py install
cd ..





Note: When sudo asks for a password, enter the password for the user debian not for root.

Clone the git repositories for bltg and gitian and then checkout the bltg version that you want to build.

git clone https://github.com/devrandom/gitian-builder.git
git clone https://github.com/Block-Logic-Technology-Group-crypto/bltg.git
cd bltg
git checkout v${VERSION}
cd ..





Note: if you’ve installed Gitian before May 16, 2015, please update to the latest version, see https://github.com/devrandom/gitian-builder/issues/86



Setting up gitian images

Gitian needs virtual images of the operating system to build in.
Currently this is Ubuntu Precise for x86_64.
These images will be copied and used every time that a build is started to
make sure that the build is deterministic.
Creating the images will take a while, but only has to be done once.

Execute the following as user debian:

cd gitian-builder
bin/make-base-vm --lxc --arch amd64 --suite precise





There will be a lot of warnings printed during build of the images. These can be ignored.

Note: When sudo asks for a password, enter the password for the user debian not for root.

Note: Repeat this step when you have upgraded to a newer version of Gitian.

Note: if you get the error message “bin/make-base-vm: mkfs.ext4: not found” during this process you have to make the following change in file “gitian-builder/bin/make-base-vm” at line 117:

# mkfs.ext4 -F $OUT-lxc
/sbin/mkfs.ext4 -F $OUT-lxc # (some Gitian environents do NOT find mkfs.ext4. Some do...)







Getting and building the inputs

Follow the instructions in doc/release-process.md in the bltg repository
under ‘Fetch and build inputs’ to install sources which require manual intervention. Also follow
the next step: ‘Seed the Gitian sources cache’, which will fetch all necessary source files allowing
for gitian to work offline.



Building BLTG

To build BLTG (for Linux, OSX and Windows) just follow the steps under ‘perform
gitian builds’ in doc/release-process.md in the bltg repository.

This may take a long time as it also builds the dependencies needed for each descriptor.
These dependencies will be cached after a successful build to avoid rebuilding them when possible.

At any time you can check the package installation and build progress with

tail -f var/install.log
tail -f var/build.log





Output from gbuild will look something like

    Initialized empty Git repository in /home/debian/gitian-builder/inputs/bltg/.git/
    remote: Reusing existing pack: 35606, done.
    remote: Total 35606 (delta 0), reused 0 (delta 0)
    Receiving objects: 100% (35606/35606), 26.52 MiB | 4.28 MiB/s, done.
    Resolving deltas: 100% (25724/25724), done.
    From https://github.com/Block-Logic-Technology-Group-crypto/bltg
    ... (new tags, new branch etc)
    --- Building for precise x86_64 ---
    Stopping target if it is up
    Making a new image copy
    stdin: is not a tty
    Starting target
    Checking if target is up
    Preparing build environment
    Updating apt-get repository (log in var/install.log)
    Installing additional packages (log in var/install.log)
    Grabbing package manifest
    stdin: is not a tty
    Creating build script (var/build-script)
    lxc-start: Connection refused - inotify event with no name (mask 32768)
    Running build script (log in var/build.log)







Building an alternative repository

If you want to do a test build of a pull on GitHub it can be useful to point
the gitian builder at an alternative repository, using the same descriptors
and inputs.

For example:

URL=https://github.com/Block-Logic-Technology-Group/bltg.git
COMMIT=b616fb8ef0d49a919b72b0388b091aaec5849b96
./bin/gbuild --commit bltg=${COMMIT} --url bltg=${URL} ../bltg/contrib/gitian-descriptors/gitian-linux.yml
./bin/gbuild --commit bltg=${COMMIT} --url bltg=${URL} ../bltg/contrib/gitian-descriptors/gitian-win.yml
./bin/gbuild --commit bltg=${COMMIT} --url bltg=${URL} ../bltg/contrib/gitian-descriptors/gitian-osx.yml







Signing externally

If you want to do the PGP signing on another device that’s also possible; just define SIGNER as mentioned
and follow the steps in the build process as normal.

gpg: skipped "crowning-": secret key not available





When you execute gsign you will get an error from GPG, which can be ignored. Copy the resulting .assert files
in gitian.sigs to your signing machine and do

    gpg --detach-sign ${VERSION}-linux/${SIGNER}/bltg-build.assert
    gpg --detach-sign ${VERSION}-win/${SIGNER}/bltg-build.assert
    gpg --detach-sign ${VERSION}-osx/${SIGNER}/bltg-build.assert





This will create the .sig files that can be committed together with the .assert files to assert your
gitian build.



Uploading signatures (not yet implemented)

In the future it will be possible to push your signatures (both the .assert and .assert.sig files) to the
[bltg/gitian.sigs]https://github.com/Block-Logic-Technology-Group/bltg/gitian.sigs/) repository, or if that’s not possible to create a pull
request.
There will be an official announcement when this repository is online.





          

      

      

    

  

  
    

    Sample init scripts and service configuration for bltgd
    

    
 
  

    
      
          
            
  
Sample init scripts and service configuration for bltgd

Sample scripts and configuration files for systemd, Upstart and OpenRC
can be found in the contrib/init folder.

contrib/init/bltgd.service:    systemd service unit configuration
contrib/init/bltgd.openrc:     OpenRC compatible SysV style init script
contrib/init/bltgd.openrcconf: OpenRC conf.d file
contrib/init/bltgd.conf:       Upstart service configuration file
contrib/init/bltgd.init:       CentOS compatible SysV style init script






Service User

All three Linux startup configurations assume the existence of a “bltg” user
and group.  They must be created before attempting to use these scripts.
The macOS configuration assumes bltgd will be set up for the current user.



Configuration

At a bare minimum, bltgd requires that the rpcpassword setting be set
when running as a daemon.  If the configuration file does not exist or this
setting is not set, bltgd will shutdown promptly after startup.

This password does not have to be remembered or typed as it is mostly used
as a fixed token that bltgd and client programs read from the configuration
file, however it is recommended that a strong and secure password be used
as this password is security critical to securing the wallet should the
wallet be enabled.

If bltgd is run with the “-server” flag (set by default), and no rpcpassword is set,
it will use a special cookie file for authentication. The cookie is generated with random
content when the daemon starts, and deleted when it exits. Read access to this file
controls who can access it through RPC.

By default the cookie is stored in the data directory, but it’s location can be overridden
with the option ‘-rpccookiefile’.

This allows for running bltgd without having to do any manual configuration.

conf, pid, and wallet accept relative paths which are interpreted as
relative to the data directory. wallet only supports relative paths.

For an example configuration file that describes the configuration settings,
see contrib/debian/examples/bltg.conf.



Paths


Linux

All three configurations assume several paths that might need to be adjusted.

Binary:              /usr/bin/bltgd
Configuration file:  /etc/bltg/bltg.conf
Data directory:      /var/lib/bltgd
PID file:            /var/run/bltgd/bltgd.pid (OpenRC and Upstart) or /run/bltgd/bltgd.pid (systemd)
Lock file:           /var/lock/subsys/bltgd (CentOS)

The configuration file, PID directory (if applicable) and data directory
should all be owned by the bltg user and group.  It is advised for security
reasons to make the configuration file and data directory only readable by the
bltg user and group.  Access to bltg-cli and other bltgd rpc clients
can then be controlled by group membership.

NOTE: When using the systemd .service file, the creation of the aforementioned
directories and the setting of their permissions is automatically handled by
systemd. Directories are given a permission of 710, giving the bltg group
access to files under it if the files themselves give permission to the
bltg group to do so (e.g. when -sysperms is specified). This does not allow
for the listing of files under the directory.

NOTE: It is not currently possible to override datadir in
/etc/bltg/bltg.conf with the current systemd, OpenRC, and Upstart init
files out-of-the-box. This is because the command line options specified in the
init files take precedence over the configurations in
/etc/bltg/bltg.conf. However, some init systems have their own
configuration mechanisms that would allow for overriding the command line
options specified in the init files (e.g. setting BITCOIND_DATADIR for
OpenRC).



macOS

Binary:              /usr/local/bin/bltgd
Configuration file:  ~/Library/Application Support/BLTG/bltg.conf
Data directory:      ~/Library/Application Support/BLTG
Lock file:           ~/Library/Application Support/BLTG/.lock




Installing Service Configuration


systemd

Installing this .service file consists of just copying it to
/usr/lib/systemd/system directory, followed by the command
systemctl daemon-reload in order to update running systemd configuration.

To test, run systemctl start bltgd and to enable for system startup run
systemctl enable bltgd

NOTE: When installing for systemd in Debian/Ubuntu the .service file needs to be copied to the /lib/systemd/system directory instead.



OpenRC

Rename bltgd.openrc to bltgd and drop it in /etc/init.d.  Double
check ownership and permissions and make it executable.  Test it with
/etc/init.d/bltgd start and configure it to run on startup with
rc-update add bltgd



Upstart (for Debian/Ubuntu based distributions)

Upstart is the default init system for Debian/Ubuntu versions older than 15.04. If you are using version 15.04 or newer and haven’t manually configured upstart you should follow the systemd instructions instead.

Drop bltgd.conf in /etc/init.  Test by running service bltgd start
it will automatically start on reboot.

NOTE: This script is incompatible with CentOS 5 and Amazon Linux 2014 as they
use old versions of Upstart and do not supply the start-stop-daemon utility.



CentOS

Copy bltgd.init to /etc/init.d/bltgd. Test by running service bltgd start.

Using this script, you can adjust the path and flags to the bltgd program by
setting the BLTGD and FLAGS environment variables in the file
/etc/sysconfig/bltgd. You can also use the DAEMONOPTS environment variable here.



macOS

Copy org.bltg.bltgd.plist into ~/Library/LaunchAgents. Load the launch agent by
running launchctl load ~/Library/LaunchAgents/org.bltg.bltgd.plist.

This Launch Agent will cause bltgd to start whenever the user logs in.

NOTE: This approach is intended for those wanting to run bltgd as the current user.
You will need to modify org.bltg.bltgd.plist if you intend to use it as a
Launch Daemon with a dedicated bltg user.




Auto-respawn

Auto respawning is currently only configured for Upstart and systemd.
Reasonable defaults have been chosen but YMMV.





          

      

      

    

  

  
    

    Mandatory Update
    

    
 
  

    
      
          
            
  (note: this is a temporary file, to be added-to by anybody, and moved to release-notes at release time)

BLTG Core version version is now available from: https://github.com/Block-Logic-Technology-Group/bltg/releases

This is a new major version release, including various bug fixes and performance improvements, as well as updated translations.

Please report bugs using the issue tracker at github: https://github.com/Block-Logic-Technology-Group/bltg/issues


Mandatory Update



How to Upgrade

If you are running an older version, shut it down. Wait until it has completely shut down (which might take a few minutes for older versions), then run the installer (on Windows) or just copy over /Applications/BLTG-Qt (on Mac) or bltgd/bltg-qt (on Linux).



Compatibility

BLTG Core is extensively tested on multiple operating systems using the Linux kernel, macOS 10.10+, and Windows 7 and later.

Microsoft ended support for Windows XP on April 8th, 2014 [https://www.microsoft.com/en-us/WindowsForBusiness/end-of-xp-support], No attempt is made to prevent installing or running the software on Windows XP, you can still do so at your own risk but be aware that there are known instabilities and issues. Please do not report issues about Windows XP to the issue tracker.

Apple released it’s last Mountain Lion update August 13, 2015, and officially ended support on December 14, 2015 [http://news.fnal.gov/2015/10/mac-os-x-mountain-lion-10-8-end-of-life-december-14/]. BLTG Core software starting with v2.0.0 will no longer run on MacOS versions prior to Yosemite (10.10). Please do not report issues about MacOS versions prior to Yosemite to the issue tracker.

BLTG Core should also work on most other Unix-like systems but is not frequently tested on them.



Notable Changes

(Developers: add your notes here as part of your pull requests whenever possible)


RPC Changes


Modified input/output for existing commands


	“CoinStake” JSON object in getblock output is removed, and replaced with the strings “stakeModifier” and “hashProofOfStake”






Removed commands

The following commands have been removed from the RPC interface:


	...






Newly introduced commands

The following new commands have been added to the RPC interface:


	...




Details about each new command can be found below.





version Change log

Detailed release notes follow. This overview includes changes that affect behavior, not code moves, refactors and string updates. For convenience in locating the code changes and accompanying discussion, both the pull request and git merge commit are mentioned.


Core Features



Build System



P2P Protocol and Network Code



GUI



RPC/REST



Wallet



Miscellaneous



Credits

Thanks to everyone who directly contributed to this release:

As well as everyone that helped, the QA team during Testing and the Node hosts supporting our Testnet.





          

      

      

    

  

  
    

    Release Process
    

    
 
  

    
      
          
            
  
Release Process


Branch updates


Before every release candidate


	Update translations (ping cpass on Discord) see translation_process.md [https://github.com/Block-Logic-Technology-Group/bltg/blob/master/doc/translation_process.md#synchronising-translations].


	Update manpages, see gen-manpages.sh [https://github.com/Block-Logic-Technology-Group/bltg/blob/master/contrib/devtools/README.md#gen-manpagessh].






Before every major and minor release


	Update version in configure.ac (don’t forget to set CLIENT_VERSION_IS_RELEASE to true)


	Write release notes (see below)






Before every major release


	Update hardcoded seeds, see this pull request [https://github.com/bitcoin/bitcoin/pull/7415] for an example.


	Update BLOCK_CHAIN_SIZE to the current size plus some overhead.


	Update src/chainparams.cpp with statistics about the transaction count and rate.


	On both the master branch and the new release branch:


	update CLIENT_VERSION_MINOR in configure.ac






	On the new release branch in configure.ac:


	set CLIENT_VERSION_REVISION to 0


	set CLIENT_VERSION_IS_RELEASE to true









After branch-off (on master)


	Update the version of contrib/gitian-descriptors/*.yml.






After branch-off (on the major release branch)


	Update the versions and the link to the release notes draft in doc/release-notes.md.






Before final release


	Merge the release notes into the branch.


	Ensure the “Needs release note” label is removed from all relevant pull requests and issues.








Building


First time / New builders

If you’re using the automated script (found in contrib/gitian-build.py), then at this point you should run it with the “–setup” command. Otherwise ignore this.

Check out the source code in the following directory hierarchy.

cd /path/to/your/toplevel/build
git clone https://github.com/Block-Logic-Technology-Group/bltg/gitian.sigs.git
git clone https://github.com/Block-Logic-Technology-Group/bltg-detached-sigs.git
git clone https://github.com/devrandom/gitian-builder.git
git clone https://github.com/Block-Logic-Technology-Group/bltg.git







BLTG maintainers/release engineers, suggestion for writing release notes

Write release notes. git shortlog helps a lot, for example:

git shortlog --no-merges v(current version, e.g. 0.7.2)..v(new version, e.g. 0.8.0)





Generate list of authors:

git log --format='- %aN' v(current version, e.g. 3.2.2)..v(new version, e.g. 3.2.3) | sort -fiu





Tag the version (or release candidate) in git:

git tag -s v(new version, e.g. 0.8.0)







Setup and perform Gitian builds

If you’re using the automated script (found in contrib/gitian-build.py), then at this point you should run it with the “–build” command. Otherwise ignore this.

Setup Gitian descriptors:

pushd ./bltg
export SIGNER=(your Gitian key, ie bluematt, sipa, etc)
export VERSION=(new version, e.g. 0.8.0)
git fetch
git checkout v${VERSION}
popd





Ensure your gitian.sigs are up-to-date if you wish to gverify your builds against other Gitian signatures.

pushd ./gitian.sigs
git pull
popd





Ensure gitian-builder is up-to-date:

pushd ./gitian-builder
git pull
popd







Fetch and create inputs: (first time, or when dependency versions change)

pushd ./gitian-builder
mkdir -p inputs
wget -P inputs https://bitcoincore.org/cfields/osslsigncode-Backports-to-1.7.1.patch
wget -P inputs http://downloads.sourceforge.net/project/osslsigncode/osslsigncode/osslsigncode-1.7.1.tar.gz
popd





Create the macOS SDK tarball, see the macOS build instructions for details, and copy it into the inputs directory.



Optional: Seed the Gitian sources cache and offline git repositories

NOTE: Gitian is sometimes unable to download files. If you have errors, try the step below.

By default, Gitian will fetch source files as needed. To cache them ahead of time, make sure you have checked out the tag you want to build in bltg, then:

pushd ./gitian-builder
make -C ../bltg/depends download SOURCES_PATH=`pwd`/cache/common
popd





Only missing files will be fetched, so this is safe to re-run for each build.

NOTE: Offline builds must use the –url flag to ensure Gitian fetches only from local URLs. For example:

pushd ./gitian-builder
./bin/gbuild --url bltg=/path/to/bltg,signature=/path/to/sigs {rest of arguments}
popd





The gbuild invocations below DO NOT DO THIS by default.



Build and sign BLTG Core for Linux, Windows, and OS X:

pushd ./gitian-builder
./bin/gbuild --num-make 2 --memory 3000 --commit bltg=v${VERSION} ../bltg/contrib/gitian-descriptors/gitian-linux.yml
./bin/gsign --signer "$SIGNER" --release ${VERSION}-linux --destination ../gitian.sigs/ ../bltg/contrib/gitian-descriptors/gitian-linux.yml
mv build/out/bltg-*.tar.gz build/out/src/bltg-*.tar.gz ../

./bin/gbuild --num-make 2 --memory 3000 --commit bltg=v${VERSION} ../bltg/contrib/gitian-descriptors/gitian-win.yml
./bin/gsign --signer "$SIGNER" --release ${VERSION}-win-unsigned --destination ../gitian.sigs/ ../bltg/contrib/gitian-descriptors/gitian-win.yml
mv build/out/bltg-*-win-unsigned.tar.gz inputs/bltg-win-unsigned.tar.gz
mv build/out/bltg-*.zip build/out/bltg-*.exe ../

./bin/gbuild --num-make 2 --memory 3000 --commit bltg=v${VERSION} ../bltg/contrib/gitian-descriptors/gitian-osx.yml
./bin/gsign --signer "$SIGNER" --release ${VERSION}-osx-unsigned --destination ../gitian.sigs/ ../bltg/contrib/gitian-descriptors/gitian-osx.yml
mv build/out/bltg-*-osx-unsigned.tar.gz inputs/bltg-osx-unsigned.tar.gz
mv build/out/bltg-*.tar.gz build/out/bltg-*.dmg ../
popd





Build output expected:


	source tarball (bltg-${VERSION}.tar.gz)


	linux 32-bit and 64-bit dist tarballs (bltg-${VERSION}-linux[32|64].tar.gz)


	windows 32-bit and 64-bit unsigned installers and dist zips (bltg-${VERSION}-win[32|64]-setup-unsigned.exe, bltg-${VERSION}-win[32|64].zip)


	macOS unsigned installer and dist tarball (bltg-${VERSION}-osx-unsigned.dmg, bltg-${VERSION}-osx64.tar.gz)


	Gitian signatures (in gitian.sigs/${VERSION}-<linux|{win,osx}-unsigned>/(your Gitian key)/)






Verify other gitian builders signatures to your own. (Optional)

Add other gitian builders keys to your gpg keyring, and/or refresh keys.

gpg --import bltg/contrib/gitian-keys/*.pgp
gpg --refresh-keys





Verify the signatures

pushd ./gitian-builder
./bin/gverify -v -d ../gitian.sigs/ -r ${VERSION}-linux ../bltg/contrib/gitian-descriptors/gitian-linux.yml
./bin/gverify -v -d ../gitian.sigs/ -r ${VERSION}-win-unsigned ../bltg/contrib/gitian-descriptors/gitian-win.yml
./bin/gverify -v -d ../gitian.sigs/ -r ${VERSION}-osx-unsigned ../bltg/contrib/gitian-descriptors/gitian-osx.yml
popd







Next steps:

Commit your signature to gitian.sigs:

pushd gitian.sigs
git add ${VERSION}-linux/"${SIGNER}"
git add ${VERSION}-win-unsigned/"${SIGNER}"
git add ${VERSION}-osx-unsigned/"${SIGNER}"
git commit -m "Add ${VERSION} unsigned sigs for ${SIGNER}"
git push  # Assuming you can push to the gitian.sigs tree
popd





Codesigner only: Create Windows/macOS detached signatures:


	Only one person handles codesigning. Everyone else should skip to the next step.


	Only once the Windows/macOS builds each have 3 matching signatures may they be signed with their respective release keys.




Codesigner only: Sign the macOS binary:

transfer bltg-osx-unsigned.tar.gz to macOS for signing
tar xf bltg-osx-unsigned.tar.gz
./detached-sig-create.sh -s "Key ID"
Enter the keychain password and authorize the signature
Move signature-osx.tar.gz back to the gitian host





Codesigner only: Sign the windows binaries:

tar xf bltg-win-unsigned.tar.gz
./detached-sig-create.sh -key /path/to/codesign.key
Enter the passphrase for the key when prompted
signature-win.tar.gz will be created





Codesigner only: Commit the detached codesign payloads:

cd ~/bltg-detached-sigs
checkout the appropriate branch for this release series
rm -rf *
tar xf signature-osx.tar.gz
tar xf signature-win.tar.gz
git add -a
git commit -m "point to ${VERSION}"
git tag -s v${VERSION} HEAD
git push the current branch and new tag





Non-codesigners: wait for Windows/macOS detached signatures:


	Once the Windows/OS X builds each have 3 matching signatures, they will be signed with their respective release keys.


	Detached signatures will then be committed to the bltg-detached-sigs [https://github.com/Block-Logic-Technology-Group/bltg-detached-sigs] repository, which can be combined with the unsigned apps to create signed binaries.




Create (and optionally verify) the signed macOS binary:

pushd ./gitian-builder
./bin/gbuild -i --commit signature=v${VERSION} ../bltg/contrib/gitian-descriptors/gitian-osx-signer.yml
./bin/gsign --signer "$SIGNER" --release ${VERSION}-osx-signed --destination ../gitian.sigs/ ../bltg/contrib/gitian-descriptors/gitian-osx-signer.yml
./bin/gverify -v -d ../gitian.sigs/ -r ${VERSION}-osx-signed ../bltg/contrib/gitian-descriptors/gitian-osx-signer.yml
mv build/out/bltg-osx-signed.dmg ../bltg-${VERSION}-osx.dmg
popd





Create (and optionally verify) the signed Windows binaries:

pushd ./gitian-builder
./bin/gbuild -i --commit signature=v${VERSION} ../bltg/contrib/gitian-descriptors/gitian-win-signer.yml
./bin/gsign --signer "$SIGNER" --release ${VERSION}-win-signed --destination ../gitian.sigs/ ../bltg/contrib/gitian-descriptors/gitian-win-signer.yml
./bin/gverify -v -d ../gitian.sigs/ -r ${VERSION}-win-signed ../bltg/contrib/gitian-descriptors/gitian-win-signer.yml
mv build/out/bltg-*win64-setup.exe ../bltg-${VERSION}-win64-setup.exe
mv build/out/bltg-*win32-setup.exe ../bltg-${VERSION}-win32-setup.exe
popd





Commit your signature for the signed macOS/Windows binaries:

pushd gitian.sigs
git add ${VERSION}-osx-signed/"${SIGNER}"
git add ${VERSION}-win-signed/"${SIGNER}"
git commit -m "Add ${SIGNER} ${VERSION} signed binaries signatures"
git push  # Assuming you can push to the gitian.sigs tree
popd







After 3 or more people have gitian-built and their results match:


	Create SHA256SUMS.asc for the builds, and GPG-sign it:




sha256sum * > SHA256SUMS





The list of files should be:

bltg-${VERSION}-aarch64-linux-gnu.tar.gz
bltg-${VERSION}-arm-linux-gnueabihf.tar.gz
bltg-${VERSION}-i686-pc-linux-gnu.tar.gz
bltg-${VERSION}-riscv64-linux-gnu.tar.gz
bltg-${VERSION}-x86_64-linux-gnu.tar.gz
bltg-${VERSION}-osx64.tar.gz
bltg-${VERSION}-osx.dmg
bltg-${VERSION}.tar.gz
bltg-${VERSION}-win32-setup.exe
bltg-${VERSION}-win32.zip
bltg-${VERSION}-win64-setup.exe
bltg-${VERSION}-win64.zip





The *-debug* files generated by the gitian build contain debug symbols
for troubleshooting by developers. It is assumed that anyone that is interested
in debugging can run gitian to generate the files for themselves. To avoid
end-user confusion about which file to pick, as well as save storage
space do not upload these to github.


	GPG-sign it, delete the unsigned file:




gpg --digest-algo sha256 --clearsign SHA256SUMS # outputs SHA256SUMS.asc
rm SHA256SUMS





(the digest algorithm is forced to sha256 to avoid confusion of the Hash: header that GPG adds with the SHA256 used for the files)
Note: check that SHA256SUMS itself doesn’t end up in SHA256SUMS, which is a spurious/nonsensical entry.


	Upload zips and installers, as well as SHA256SUMS.asc from last step, to the GitHub release (see below)


	Announce the release:


	bitcointalk announcement thread


	Optionally twitter, reddit /r/bltg, … but this will usually sort out itself


	Archive release notes for the new version to doc/release-notes/ (branch master and branch of the release)


	Create a new GitHub release [https://github.com/Block-Logic-Technology-Group/bltg/releases/new] with a link to the archived release notes.


	Celebrate













          

      

      

    

  

  
    

    TOR SUPPORT IN BLTG
    

    
 
  

    
      
          
            
  
TOR SUPPORT IN BLTG

It is possible to run BLTG Core as a Tor hidden service, and connect to such services.

The following directions assume you have a Tor proxy running on port 9050. Many distributions default to having a SOCKS proxy listening on port 9050, but others may not. In particular, the Tor Browser Bundle defaults to listening on port 9150. See Tor Project FAQ:TBBSocksPort [https://www.torproject.org/docs/faq.html.en#TBBSocksPort] for how to properly
configure Tor.


1. Run BLTG Core behind a Tor proxy



The first step is running BLTG behind a Tor proxy. This will already anonymize all
outgoing connections, but more is possible.

-proxy=ip:port  Set the proxy server. If SOCKS5 is selected (default), this proxy
                server will be used to try to reach .onion addresses as well.

-onion=ip:port  Set the proxy server to use for Tor hidden services. You do not
                need to set this if it's the same as -proxy. You can use -noonion
                to explicitly disable access to hidden services.

-listen         When using -proxy, listening is disabled by default. If you want
                to run a hidden service (see next section), you'll need to enable
                it explicitly.

-connect=X      When behind a Tor proxy, you can specify .onion addresses instead
-addnode=X      of IP addresses or hostnames in these parameters. It requires
-seednode=X     SOCKS5. In Tor mode, such addresses can also be exchanged with
                other P2P nodes.

-onlynet=onion  Make outgoing connections only to .onion addresses. Incoming
                connections are not affected by this option. This option can be
                specified multiple times to allow multiple network types, e.g.
                ipv4, ipv6, or onion.





In a typical situation, this suffices to run behind a Tor proxy:

./bltgd -proxy=127.0.0.1:9050







2. Run a BLTG hidden server

If you configure your Tor system accordingly, it is possible to make your node also
reachable from the Tor network. Add these lines to your /etc/tor/torrc (or equivalent
config file): Needed for Tor version 0.2.7.0 and older versions of Tor only. For newer
versions of Tor see Section 3.

HiddenServiceDir /var/lib/tor/bltg-service/
HiddenServicePort 17127 127.0.0.1:17127
HiddenServicePort 18127 127.0.0.1:18127





The directory can be different of course, but (both) port numbers should be equal to
your bltgd’s P2P listen port (17127 by default).

-externalip=X   You can tell bltg about its publicly reachable address using
                this option, and this can be a .onion address. Given the above
                configuration, you can find your .onion address in
                /var/lib/tor/bltg-service/hostname. For connections
                coming from unroutable addresses (such as 127.0.0.1, where the
                Tor proxy typically runs), .onion addresses are given
                preference for your node to advertise itself with.

-listen         You'll need to enable listening for incoming connections, as this
                is off by default behind a proxy.

-discover       When -externalip is specified, no attempt is made to discover local
                IPv4 or IPv6 addresses. If you want to run a dual stack, reachable
                from both Tor and IPv4 (or IPv6), you'll need to either pass your
                other addresses using -externalip, or explicitly enable -discover.
                Note that both addresses of a dual-stack system may be easily
                linkable using traffic analysis.





In a typical situation, where you’re only reachable via Tor, this should suffice:

./bltgd -proxy=127.0.0.1:9050 -externalip=bltgzj6l4cvo2fxy.onion -listen





(obviously, replace the .onion address with your own). It should be noted that you still
listen on all devices and another node could establish a clearnet connection, when knowing
your address. To mitigate this, additionally bind the address of your Tor proxy:

./bltgd ... -bind=127.0.0.1





If you don’t care too much about hiding your node, and want to be reachable on IPv4
as well, use discover instead:

./bltgd ... -discover





and open port 17127 on your firewall (or use -upnp).

If you only want to use Tor to reach .onion addresses, but not use it as a proxy
for normal IPv4/IPv6 communication, use:

./bltgd -onion=127.0.0.1:9050 -externalip=bltgzj6l4cvo2fxy.onion -discover







3. Automatically listen on Tor

Starting with Tor version 0.2.7.1 it is possible, through Tor’s control socket
API, to create and destroy ‘ephemeral’ hidden services programmatically.
BLTG Core has been updated to make use of this.

This means that if Tor is running (and proper authentication has been configured),
BLTG Core automatically creates a hidden service to listen on. This will positively
affect the number of available .onion nodes.

This new feature is enabled by default if BLTG Core is listening (-listen), and
requires a Tor connection to work. It can be explicitly disabled with -listenonion=0
and, if not disabled, configured using the -torcontrol and -torpassword settings.
To show verbose debugging information, pass -debug=tor.

Connecting to Tor’s control socket API requires one of two authentication methods to be
configured. It also requires the control socket to be enabled, e.g. put ControlPort 9051
in torrc config file. For cookie authentication the user running bltgd must have read
access to the CookieAuthFile specified in Tor configuration. In some cases this is
preconfigured and the creation of a hidden service is automatic. If permission problems
are seen with -debug=tor they can be resolved by adding both the user running Tor and
the user running bltgd to the same group and setting permissions appropriately. On
Debian-based systems the user running bltgd can be added to the debian-tor group,
which has the appropriate permissions.

An alternative authentication method is the use
of the -torpassword=password option. The password is the clear text form that
was used when generating the hashed password for the HashedControlPassword option
in the tor configuration file. The hashed password can be obtained with the command
tor --hash-password password (read the tor manual for more details).



4. Privacy recommendations


	Do not add anything but BLTG Core ports to the hidden service created in section 2.
If you run a web service too, create a new hidden service for that.
Otherwise it is trivial to link them, which may reduce privacy. Hidden
services created automatically (as in section 3) always have only one port
open.








          

      

      

    

  

  
    

    Translations
    

    
 
  

    
      
          
            
  
Translations

The BLTG Core project has been designed to support multiple localisations. This makes adding new phrases, and completely new languages easily achievable. For managing all application translations, BLTG Core makes use of the Transifex online translation management tool.


Helping to translate (using Transifex)

Transifex is setup to monitor the GitHub repo for updates, and when code containing new translations is found, Transifex will process any changes. It may take several hours after a pull-request has been merged, to appear in the Transifex web interface.

Multiple language support is critical in assisting BLTG’s global adoption, and growth. Any help making that easier is greatly appreciated.

See the Transifex BLTG project [https://www.transifex.com/block-logic/bltg/] to assist in translations.



Writing code with translations

We use automated scripts to help extract translations in both Qt, and non-Qt source files. It is rarely necessary to manually edit the files in src/qt/locale/. The translation source files must adhere to the following format:
bltg_xx_YY.ts or bltg_xx.ts

src/qt/locale/bltg_en.ts is treated in a special way. It is used as the source for all other translations. Whenever a string in the source code is changed, this file must be updated to reflect those changes. A custom script is used to extract strings from the non-Qt parts. This script makes use of gettext, so make sure that utility is installed (ie, apt-get install gettext on Ubuntu/Debian). Once this has been updated, lupdate (included in the Qt SDK) is used to update bltg_en.ts.

To automatically regenerate the bltg_en.ts file, run the following commands:

cd src/
make translate





contrib/bltg-qt.pro takes care of generating .qm (binary compiled) files from .ts (source files) files. It’s mostly automated, and you shouldn’t need to worry about it.

Example Qt translation

QToolBar *toolbar = addToolBar(tr("Tabs toolbar"));







Creating a pull-request

For general PRs, you shouldn’t include any updates to the translation source files. They will be updated periodically, primarily around pre-releases, allowing time for any new phrases to be translated before public releases. This is also important in avoiding translation related merge conflicts.

When an updated source file is merged into the GitHub repo, Transifex will automatically detect it (although it can take several hours). Once processed, the new strings will show up as “Remaining” in the Transifex web interface and are ready for translators.

To create the pull-request, use the following commands:

git add src/qt/bltgstrings.cpp src/qt/locale/bltg_en.ts
git commit







Creating a Transifex account

Visit the Transifex Signup [https://www.transifex.com/signup/] page to create an account. Take note of your username and password, as they will be required to configure the command-line tool.

You can find the BLTG translation project at https://www.transifex.com/block-logic/bltg/.



Installing the Transifex client command-line tool

The client is used to fetch updated translations. If you are having problems, or need more details, see https://docs.transifex.com/client/installing-the-client

pip install transifex-client

Setup your Transifex client config as follows. Please ignore the token field.

nano ~/.transifexrc

[https://www.transifex.com]
hostname = https://www.transifex.com
password = PASSWORD
token =
username = USERNAME





The Transifex BLTG project config file is included as part of the repo. It can be found at .tx/config, however you shouldn’t need to change anything.



Synchronising translations

To assist in updating translations, we have created a script to help.


	python contrib/devtools/update-translations.py


	git add new translations from src/qt/locale/


	Update src/qt/bltg_locale.qrc manually or via




git ls-files src/qt/locale/*ts|xargs -n1 basename|sed 's/\(bltg_\(.*\)\).ts/<file alias="\2">locale\/\1.qm<\/file>/'






	Update src/Makefile.qt.include manually or via




git ls-files src/qt/locale/*ts|xargs -n1 basename|sed 's/\(bltg_\(.*\)\).ts/  qt\/locale\/\1.ts \\/'





Do not directly download translations one by one from the Transifex website, as we do a few post-processing steps before committing the translations.



Handling Plurals (in source files)

When new plurals are added to the source file, it’s important to do the following steps:


	Open bltg_en.ts in Qt Linguist (included in the Qt SDK)


	Search for %n, which will take you to the parts in the translation that use plurals


	Look for empty English Translation (Singular) and English Translation (Plural) fields


	Add the appropriate strings for the singular and plural form of the base string


	Mark the item as done (via the green arrow symbol in the toolbar)


	Repeat from step 2, until all singular and plural forms are in the source file


	Save the source file






Translating a new language

To create a new language template, you will need to edit the languages manifest file src/qt/bltg_locale.qrc and add a new entry. Below is an example of the English language entry.

<qresource prefix="/translations">
    <file alias="en">locale/bltg_en.qm</file>
    ...
</qresource>





Note: that the language translation file must end in .qm (the compiled extension), and not .ts.



Questions and general assistance

The BLTG Core translation maintainers can be found in the BLTG Discord [https://discord.gg/JHDkHN4].

Announcements will be posted during application pre-releases to notify translators to check for updates.





          

      

      

    

  

  
    

    Translation Strings Policy
    

    
 
  

    
      
          
            
  
Translation Strings Policy

This document provides guidelines for internationalization of the PIVX Core software.


How to translate?

To mark a message as translatable


	In GUI source code (under src/qt): use tr("...")


	In non-GUI source code (under src): use _("...")




No internationalization is used for e.g. developer scripts outside src.



Strings to be translated

On a high level, these strings are to be translated:


	GUI strings, anything that appears in a dialog or window





GUI strings

Anything that appears to the user in the GUI is to be translated. This includes labels, menu items, button texts, tooltips and window titles.
This includes messages passed to the GUI through the UI interface through InitMessage, ThreadSafeMessageBox or ShowProgress.




General recommendations


Avoid unnecessary translation strings

Try not to burden translators with translating messages that are e.g. slight variations of other messages.
In the GUI, avoid the use of text where an icon or symbol will do.
Make sure that placeholder texts in forms do not end up in the list of strings to be translated (use <string notr="true">).



Make translated strings understandable

Try to write translation strings in an understandable way, for both the user and the translator. Avoid overly technical or detailed messages.



Do not translate internal errors

Do not translate internal errors, log messages, or messages that appear on the RPC interface. If an error is to be shown to the user,
use a translatable generic message, then log the detailed message to the log. E.g., “A fatal internal error occurred, see debug.log for details”.
This helps troubleshooting; if the error is the same for everyone, the likelihood is increased that it can be found using a search engine.



Avoid fragments

Avoid dividing up a message into fragments. Translators see every string separately, so they may misunderstand the context if the messages are not self-contained.



Avoid HTML in translation strings

There have been difficulties with the use of HTML in translation strings; translators should not be able to accidentally affect the formatting of messages.
This may sometimes be at conflict with the recommendation in the previous section.



Plurals

Plurals can be complex in some languages. A quote from the gettext documentation:

In Polish we use e.g. plik (file) this way:
1 plik,
2,3,4 pliki,
5-21 pliko'w,
22-24 pliki,
25-31 pliko'w
and so on





In Qt code, use tr’s third argument for optional plurality. For example:

tr("%n hour(s)","",secs/HOUR_IN_SECONDS);
tr("%n day(s)","",secs/DAY_IN_SECONDS);
tr("%n week(s)","",secs/WEEK_IN_SECONDS);





This adds <numerusform>s to the respective .ts file, which can be translated separately depending on the language. In English, this is simply:

<message numerus="yes">
    <source>%n active connection(s) to PIVX network</source>
    <translation>
        <numerusform>%n active connection to PIVX network</numerusform>
        <numerusform>%n active connections to PIVX network</numerusform>
    </translation>
</message>





Where possible, try to avoid embedding numbers into the flow of the string at all. E.g.,

WARNING: check your network connection, %d blocks received in the last %d hours (%d expected)





versus

WARNING: check your network connection, less blocks (%d) were received in the last %n hours than expected (%d).





The second example reduces the number of pluralized words that translators have to handle from three to one, at no cost to comprehensibility of the sentence.



String freezes

During a string freeze (often before a major release), no translation strings are to be added, modified or removed.

This can be checked by executing make translate in the src directory, then verifying that bltg_en.ts remains unchanged.






          

      

      

    

  

  
    

    Block and Transaction Broadcasting With ZeroMQ
    

    
 
  

    
      
          
            
  
Block and Transaction Broadcasting With ZeroMQ

ZeroMQ [http://zeromq.org/] is a lightweight wrapper around TCP
connections, inter-process communication, and shared-memory,
providing various message-oriented semantics such as publish/subscribe,
request/reply, and push/pull.

The BLTG Core daemon can be configured to act as a trusted “border
router”, implementing the bltg wire protocol and relay, making
consensus decisions, maintaining the local blockchain database,
broadcasting locally generated transactions into the network, and
providing a queryable RPC interface to interact on a polled basis for
requesting blockchain related data. However, there exists only a
limited service to notify external software of events like the arrival
of new blocks or transactions.

The ZeroMQ facility implements a notification interface through a set
of specific notifiers. Currently there are notifiers that publish
blocks and transactions. This read-only facility requires only the
connection of a corresponding ZeroMQ subscriber port in receiving
software; it is not authenticated nor is there any two-way protocol
involvement. Therefore, subscribers should validate the received data
since it may be out of date, incomplete or even invalid.

ZeroMQ sockets are self-connecting and self-healing; that is,
connections made between two endpoints will be automatically restored
after an outage, and either end may be freely started or stopped in
any order.

Because ZeroMQ is message oriented, subscribers receive transactions
and blocks all-at-once and do not need to implement any sort of
buffering or reassembly.


Prerequisites

The ZeroMQ feature in BLTG Core requires the ZeroMQ API >= 4.0.0
libzmq [https://github.com/zeromq/libzmq/releases].
For version information, see dependencies.md.
Typically, it is packaged by distributions as something like
libzmq3-dev. The C++ wrapper for ZeroMQ is not needed.

In order to run the example Python client scripts in contrib/ one must
also install python3-zmq, though this is not necessary for daemon
operation.



Enabling

By default, the ZeroMQ feature is automatically compiled in if the
necessary prerequisites are found.  To disable, use –disable-zmq
during the configure step of building bltgd:

$ ./configure --disable-zmq (other options)





To actually enable operation, one must set the appropriate options on
the commandline or in the configuration file.



Usage

Currently, the following notifications are supported:

-zmqpubhashtx=address
-zmqpubhashtxlock=address
-zmqpubhashblock=address
-zmqpubrawblock=address
-zmqpubrawtx=address
-zmqpubrawtxlock=address





The socket type is PUB and the address must be a valid ZeroMQ socket
address. The same address can be used in more than one notification.

For instance:

$ bltgd -zmqpubhashtx=tcp://127.0.0.1:28332 \
           -zmqpubrawtx=ipc:///tmp/bltgd.tx.raw





Each PUB notification has a topic and body, where the header
corresponds to the notification type. For instance, for the
notification -zmqpubhashtx the topic is hashtx (no null
terminator) and the body is the hexadecimal transaction hash (32
bytes).

These options can also be provided in bltg.conf.

ZeroMQ endpoint specifiers for TCP (and others) are documented in the
ZeroMQ API [http://api.zeromq.org/4-0:_start].

Client side, then, the ZeroMQ subscriber socket must have the
ZMQ_SUBSCRIBE option set to one or either of these prefixes (for
instance, just hash); without doing so will result in no messages
arriving. Please see contrib/zmq/zmq_sub.py for a working example.



Remarks

From the perspective of bltgd, the ZeroMQ socket is write-only; PUB
sockets don’t even have a read function. Thus, there is no state
introduced into bltgd directly. Furthermore, no information is
broadcast that wasn’t already received from the public P2P network.

No authentication or authorization is done on connecting clients; it
is assumed that the ZeroMQ port is exposed only to trusted entities,
using other means such as firewalling.

Note that when the block chain tip changes, a reorganisation may occur
and just the tip will be notified. It is up to the subscriber to
retrieve the chain from the last known block to the new tip.

There are several possibilities that ZMQ notification can get lost
during transmission depending on the communication type you are
using. bltgd appends an up-counting sequence number to each
notification which allows listeners to detect lost notifications.





          

      

      

    

  

  
    

    Non-Mandatory Update
    

    
 
  

    
      
          
            
  BLTG Core version 2.0.0 is now available from:  https://github.com/Block-Logic-Technology-Group/bltg/releases

This is a new minor version release, including various bug fixes and performance improvements, as well as updated translations.

Please report bugs using the issue tracker at github: https://github.com/Block-Logic-Technology-Group/bltg/issues


Non-Mandatory Update

BLTG Core v2.0.0 is a mandatory update to move our whole network onto a new codebase starting a brand new Network.



How to Upgrade

If you are running an older version, shut it down. Wait until it has completely shut down (which might take a few minutes for older versions), then run the installer (on Windows) or just copy over /Applications/BLTG-Qt (on Mac) or bltgd/bltg-qt (on Linux).



Compatibility

BLTG Core is extensively tested on multiple operating systems using
the Linux kernel, macOS 10.8+, and Windows Vista and later.

Microsoft ended support for Windows XP on April 8th, 2014 [https://www.microsoft.com/en-us/WindowsForBusiness/end-of-xp-support],
No attempt is made to prevent installing or running the software on Windows XP, you
can still do so at your own risk but be aware that there are known instabilities and issues.
Please do not report issues about Windows XP to the issue tracker.

BLTG Core should also work on most other Unix-like systems but is not
frequently tested on them.


MacOS 10.13 High Sierra

Currently there are issues with the gitian release on MacOS version 10.13 (High Sierra), no reports of issues on older versions of MacOS.




Notable Changes


zBLTG Updates


zBLTG status:

zBLTG will be disabled for the forseable future as more testing is required.



Switch to libsecp256k1 signature verification

Here is the long overdue update for BLTG to let go of OpenSSL in its consensus code. The rationale behind it is to avoid depending on an external and changing library where our consensus code is affected. This is security and consensus critical. BLTG users will experience quicker block validations and sync times as block transactions are verified under libsecp256k1.

The recent CVE-2018-0495 [https://www.nccgroup.trust/us/our-research/technical-advisory-return-of-the-hidden-number-problem/] brings into question a potential vulnerability with OpenSSL (and other crypto libraries) that libsecp256k1 is not susceptible to.




2.0.0 Change log

Detailed release notes follow. This overview includes changes that affect behavior, code moves, refactoring and string updates. For convenience in locating the code changes and accompanying discussion, both the pull request and git merge commit are mentioned.



Credits

Thanks to everyone who directly contributed to this release:


	Cpass78


	minerric




and of course


	PIVX team for an awsome codebase








          

      

      

    

  

  
    

    Mandatory Update
    

    
 
  

    
      
          
            
  BLTG Core version 3.0.0 is now available from:  https://github.com/Block-Logic-Technology-Group/bltg/releases

This is a new major version release, including various bug fixes and performance improvements, as well as updated translations.

Please report bugs using the issue tracker at github: https://github.com/Block-Logic-Technology-Group/bltg/issues

As Block-Logic is based on open-source code from the pivx project, an exhaustive description of all changes can be found at https://github.com/PIVX-Project/PIVX/releases


Mandatory Update

BLTG Core v3.0.0 is a mandatory update for all users.

Masternodes will need to be restarted once both the masternode daemon and the controller wallet have been upgraded.



How to Upgrade

If you are running an older version, shut it down. Wait until it has completely shut down (which might take a few minutes for older versions), then run the installer (on Windows) or just copy over /Applications/BLTG-Qt (on Mac) or bltgd/bltg-qt (on Linux).



Compatibility

BLTG Core is extensively tested on multiple operating systems using the Linux kernel, macOS 10.10+, and Windows 7 and later.

Microsoft ended support for Windows XP on April 8th, 2014 [https://www.microsoft.com/en-us/WindowsForBusiness/end-of-xp-support], No attempt is made to prevent installing or running the software on Windows XP, you can still do so at your own risk but be aware that there are known instabilities and issues. Please do not report issues about Windows XP to the issue tracker.

Apple released it’s last Mountain Lion update August 13, 2015, and officially ended support on December 14, 2015 [http://news.fnal.gov/2015/10/mac-os-x-mountain-lion-10-8-end-of-life-december-14/]. BLTG Core software starting with v3.0.0 will no longer run on MacOS versions prior to Yosemite (10.10). Please do not report issues about MacOS versions prior to Yosemite to the issue tracker.

BLTG Core should also work on most other Unix-like systems but is not frequently tested on them.



Notable Changes


Zerocoin removal

Recent exploits of the Zerocoin protocol (Wrapped serials and broken P1 proof) required us to enable the zerocoin spork and deactivate zBLTG functionality.

Given that BLTG is a non-currency and is meant as a token to provide other services, as well as the issues presented in the Zerocoin protocol, the Zerocoin functionality has been completely disabled starting with this release.

Complete removal will continue to occur over future updates. This won’t negatively impact wallet performance or functionality.



Removal of port restriction

In efforts to make it more economical for users to run masternodes, given the all around market conditions of the crypto sphere, it is now possible
to run multiple masternodes on a single vps using a single ipv4 address.



GUI Changes

Improved graphical interface with updated graphics.


Options Dialog Cleanup

The options/settings UI dialog has been cleaned up to no longer show settings that are wallet related when running in “disable wallet” (-disablewallet) mode.




RPC Changes


Removal of Deprecated Commands

The masternode and mnbudget RPC commands, which were marked as deprecated in PIVX Core v2.3.1 (September 19, 2017), have now been completely removed from BLTG Core.

Several new commands were added in v2.3.1 to replace the two aforementioned commands, reference the v2.3.1 Release Notes [https://github.com/PIVX-Project/PIVX/blob/master/doc/release-notes/release-notes-2.3.1.md#rpc-changes] for further details.



New getblockindexstats Command

A new RPC command (getblockindexstats) has been introduced which serves the purpose of obtaining statistical information on a range of blocks. The information returned is as follows:


	transaction count (not including coinbase/coinstake txes)


	transaction count (including coinbase/coinstake txes)


	total transaction bytes


	total fees in block range


	average fee per kB




Command Reference:

getblockindexstats height range ( fFeeOnly )
nReturns aggregated BlockIndex data for blocks
height, height+1, height+2, ..., height+range-1]

nArguments:
1. height             (numeric, required) block height where the search starts.
2. range              (numeric, required) number of blocks to include.
3. fFeeOnly           (boolean, optional, default=False) return only fee info.





Result:

{
  first_block: x,              (integer) First counted block
  last_block: x,               (integer) Last counted block
  txcount: xxxxx,              (numeric) tx count (excluding coinbase/coinstake)
  txcount_all: xxxxx,          (numeric) tx count (including coinbase/coinstake)
  txbytes: xxxxx,              (numeric) Sum of the size of all txes over block range
  ttlfee: xxxxx,               (numeric) Sum of the fee amount of all txes over block range
  ttlfee_all: xxxxx,           (numeric) Sum of the fee amount of all txes over block range
  feeperkb: xxxxx,             (numeric) Average fee per kb
}








Build System Changes


New Architectures for Depends

The depends system has new added support for the s390x and ppc64el architectures. This is done in order to support the future integration with Snapcraft [https://www.snapcraft.io], as well as to support any developers who may use systems based on such architectures.



Basic CMake Support

While the existing Autotools based build system is our standard build system, and will continue to be so, we have added basic support for compiling with CMake on macOS and linux systems.

This is intended to be used in conjunction with IDEs like CLion (which relies heavily on CMake) in order to streamline the development process. Developers can now use, for example, CLion’s internal debugger and profiling tools.

Note that it is still required to have relevant dependencies installed on the system for this to function properly.





3.0.0 Change log

Detailed release notes follow. This overview includes changes that affect behavior, not code moves, refactors and string updates.

With the exception of Zerocoin related items, this release integrates all the below changes from PIVX project


Core


	#875 a99c2dd3bb [Zerocoin] GMP BigNum: Fix limits for random number generators (random-zebra)


	#888 0c071c3fd0 [Zerocoin] remove CTransaction::IsZerocoinSpend/IsZerocoinMint (random-zebra)


	#891 855408c2c3 [ZPIV] Zerocoin public coin spend. (furszy)


	#897 65bd788945 [zPIV] Disable zerocoin minting (random-zebra)


	#899 4b22a09024 [zPIV] Disable zPIV staking (random-zebra)


	#909 458b08c8f2 [Consensus] Mainnet public spend enforcement height set. (furszy)


	#924 988b33dab8 [Backport] Max tip age to consider a node in IBD status customizable. (furszy)


	#925 a9827a0e63 [Consensus] Time checks (warrows)


	#549 8bf13a5ad [Crypto] Switch to libsecp256k1 signature verification and update the lib (warrows)


	#609 6b73598b9 [MoveOnly] Remove zPIV code from main.cpp (presstab)


	#610 6c3bc8c76 [Main] Check whether tx is in chain in ContextualCheckZerocoinMint(). (presstab)


	#624 1a82aec96 [Core] Missing seesaw value for block 325000 (warrows)


	#636 d359c6136 [Main] Write to the zerocoinDB in batches (Fuzzbawls)






Build System


	#810 a373fee908 [Depends] Fix archs (fixes s390x and ppc64el builds on snap) (cevap)


	#906 8a47747b59 [Build] Add CMake Support (Fuzzbawls)


	#910 07c8fb8f88 [Build] Clean all coverage files during make clean (Fuzzbawls)


	#913 473976c619 [Depends] Update from upstream (Fuzzbawls)


	#914 5a43ea790a [Gitian] Bump gitian build versions (Fuzzbawls)


	#917 b38ef04838 [Build] TravisCI Update (Fuzzbawls)


	#922 0f98fd4d3f [Build] Fix app name casing in mac deploy related files (Fuzzbawls)


	#858 a2c801205e [Build] [macOS] Fix macOS dmg issue (10.12+) (Jonas Schnelli)


	#866 9cd6016f3a [Build] Update debian contrib files (Fuzzbawls)


	#758 81c7c4764c [Depends] Update libsecp256k1 to latest master (warrows)


	#804 4a8e46a158 [Depends] Update zmq to 4.3.1 (Dimitris Apostolou)


	#795 1920f3e8ad [Build] Add support for RISC-V and build it with gitian (cevap)


	#786 44226f225e [Build] add gitian build python script (cevap)


	#783 ccba68e425 [Depends] Update QT to 5.9.7 (cevap)


	#754 b9cbeb0951 [Build] Update Build/Depends systems from upstream (Fuzzbawls)


	#752 63fb77b0a9 [Build] Fix Thread Safety Analysis Warnings (Fuzzbawls)


	#749 36ff23553c [Build] Update genbuild.sh script (Fuzzbawls)


	#681 95ec0763cf [Depends] Add gmp bignum support for zerocoin lib (warrows)


	#704 f0a427bfd7 [Build] GCC-7 and glibc-2.27 back compat (Fuzzbawls)


	#706 d3c5b808dd [Build] Remove throw keywords in leveldb function signatures (Fuzzbawls)


	#708 72cd07186b [Build] Remove stale m4 file (Fuzzbawls)


	#671 b003052103 [Build] Update to latest leveldb (Fuzzbawls)


	#605 b4d82c944 [Build] Remove unnecessary BOOST dependency (Mrs-X)


	#622 b8c672c98 [Build] Make sure Boost headers are included for libzerocoin (Fuzzbawls)


	#639 98c7a4f65 [Travis] Add separate job to check doc/logprint/subtree (Fuzzbawls)


	#648 9950fce59 [Depends] Update Qt download url (fanquake)






P2P Protocol and Network Code


	#908 95b584effd [NET] Non-running dns servers removed from chainParams. (furszy)


	#929 7e8855d910 [Net] Update hard-coded seeds (Fuzzbawls)


	#930 5061b486c2 [Net] Add a couple new testnet checkpoints (Fuzzbawls)


	#880 a890dc97cd [NET] Valid forked blocks rejected fix. (furszy)


	#884 013676df00 [Net] Add additional checkpoints (Fuzzbawls)


	#887 ec7993eac8 [Net] Fix incorrect last checkpoint timestamp (Fuzzbawls)


	#861 909ed11702 [Net] Add new checkpoints for mainnet/testnet (Fuzzbawls)


	#843 817cec4ff4 [Net] Increment Protocol Version (Fuzzbawls)


	#837 d241b5ed77 [Zerocoin][UNIT TEST][RPC] Wrapped serials. (random-zebra)


	#803 065f94118d [NET] Invalid blocks from forks stored on disk fix + blocks DoS spam filter. (furszy)


	#802 ed0dd2a20a [Refactor] Remove begin/end_ptr functions (warrows)


	#768 204c038a4d [Net] Zerocoin Light Node Protocol (furszy)


	#798 a663bccea7 [Net] Improve addrman Select() performance when buckets are nearly empty (Pieter Wuille)


	#800 7fa20d69f6 [Net] nLastTry is only used for addrman entries (Pieter Wuille)


	#740 5f7cb412a3 [Net] Pull uacomment in from upstream (Fuzzbawls)


	#774 167c7fa6d0 [Budget] Make checks for MN-autovoting deterministic (Mrs-X)


	#770 ab9cf3629c [Main] Do not record zerocoin tx’s in ConnectBlock() if it is fJustCheck (presstab)


	#705 6a5b64bc21 [Main] Check Lock Time Verify (presstab)


	#608 a602d00eb [Budget] Make sorting of finalized budgets deterministic (Mrs-X)


	#647 3aa3e5c97 [Net] Update hard-coded fallback seeds (Fuzzbawls)






GUI


	#874 23f17ce021 [Qt] Add new budget colors (warrows)


	#895 0417d52ef9 [QT] Options UI cleanup (Alko89)


	#896 b2fcefee93 [UI] Simplify Qt margins. (warrows)


	#898 3d496cc746 [Qt] Fixup duplicate label names (Fuzzbawls)


	#900 5f7559bc7b [UI] Fix improperly parented walletView and segmentation fault on QT 5.10 (Julian Meyer)


	#928 2482572f89 [Qt] Update Translations (Fuzzbawls)


	#860 2cefebd1f7 [Qt] Prevent double deletion of progress dialog (Fuzzbawls)


	#852 37e88b892f [QT] Fix a display bug about zPIV mints (warrows)


	#863 89b84a4f5a [Qt] Stop using a solid white image as a border image (Fuzzbawls)


	#850 e488db7334 [Qt] Update localizations from Transifex (Fuzzbawls)


	#847 fc924c1f63 [Qt] Fix to display missing clock5.png tx image (joeuhren)


	#840 757d81c4a9 [QT] cleanup, remove old trading dialog form (furszy)


	#826 0d738b3dc0 [Qt] Fix a windows only crash when r-clicking a proposal (warrows)


	#792 c12697469b [UI] Add a budget monitoring and voting tab (warrows)


	#794 8dcb52fcd4 [UI] Open related options tab when clicking automint icon (warrows)


	#791 c0aa454e19 [Qt] Fix Missing Explorer Icon (sicXnull)


	#779 d617c85a89 [Qt] Periodic translation update (Fuzzbawls)


	#781 10e1a8a306 [Qt] Don’t show staking/automint status icons without a wallet (Fuzzbawls)


	#776 3fcdc932d9 [Qt] Add a security warning to the debug console’s default output. (Fuzzbawls)


	#747 feb87c10fa [GUI] Hide orphans - contextMenu action (random-zebra)


	#741 ea2637838c [GUI] Sort by ‘data’ in zPIV and coin control dialogs (random-zebra)


	#733 9a792d73e9 [GUI] Hide orphans (random-zebra)


	#735 44840c5069 [Qt] Stop using dummy strings in clientversion.cpp (Fuzzbawls)


	#725 793db15baf [UI] Sort numbers correctly in zPIV and coin control dialogs (random-zebra)


	#714 bf2ad88066 [UI] Add address field in receive tab (warrows)


	#683 ec1180b52c [Qt] receivecoinsdialog - address control + clean UI (random-zebra)


	#677 29fab5982f [Qt] change colors for tx labels in history/overview (random-zebra)


	#693 022b58257c [UI] Add address to the payment request history (warrows)


	#698 3f35bc81d8 [Qt] Remove Qt4 build support & code fallbacks (Wladimir J. van der Laan)


	#655 de0c4e0888 [Qt] Fix PIV balances on overview page (Fuzzbawls)


	#680 71ac5285e5 [Qt] Privacy dialog: hide/show denominations (random-zebra)


	#675 8a26ba0b07 [Qt] SwiftX - intuitiveness (random-zebra)


	#668 4a68c9ed43 [Qt] Clean up Multisend Dialog UI (Fuzzbawls)


	#580 c296b7572 Fixed Multisend dialog to show settings properly (SHTDJ)


	#598 f0d894253 [GUI] Fix wrongly displayed balance on Overview tab (Mrs-X)


	#600 217433561 [GUI] Only enable/disable PrivacyDialog zPIV elements if needed. (presstab)


	#612 6dd752cb5 [Qt] Show progress percent for zpiv reindex operations (Fuzzbawls)


	#626 9b6a42ba0 [Qt] Add Tor service icon to status bar (Fuzzbawls)


	#629 14e125795 [Qt] Remove useless help button from QT dialogs (windows) (warrows)


	#646 c66b7b632 [Qt] Periodic translation update (Fuzzbawls)






RPC/REST


	#877 54c8832d80 [RPC] Remove deprecated masternode/budget RPC commands (Fuzzbawls)


	#901 be3aab4a00 [RPC] Fix typos and oversights in listunspent (CaveSpectre11)


	#911 484c070b22 [RPC] add ‘getblockindexstats’ function (random-zebra)


	#838 5673c8373e [RPC][Test] spendrawzerocoin + wrapped serials functional test (random-zebra)


	#821 86d6133735 [RPC] Fixup signrawtransaction on regtest (Fuzzbawls)


	#751 e820cf3816 [RPC] Show the configured/set txfee in getwalletinfo (Fuzzbawls)


	#750 25fe72d97d [RPC] Add mediantime to getblock/getblockheader output (Fuzzbawls)


	#760 8b79a3944a [RPC] Show BIP65 soft-fork progress in getblockchaininfo (Fuzzbawls)


	#742 297d67b43a [RPC] Add masternode’s pubkey to listmasternodes RPC (presstab)


	#729 f84ec3df8b [RPC] Fix RPCTimerInterface (random-zebra)


	#727 08f6e1774b [RPC] Add ‘spendzerocoinmints’ RPC call (random-zebra)


	#726 8f28b7ad23 [RPC] include mints metadata in ‘listmintedzerocoins’ output (random-zebra)


	#724 ee0717c2af [RPC] Ensure that a numeric is being passed to AmmountFromValue (Fuzzbawls)


	#723 0774f5fc0d [RPC] Error when calling getreceivedbyaddress with non-wallet address (Fuzzbawls)


	#722 3ce4fd7226 [RPC] Add more verbosity to validateaddress (Fuzzbawls)


	#721 cecda14082 [RPC] Fix movecmd’s help description to include amount (Fuzzbawls)


	#720 056b4d5cb1 [RPC] Sanitize walletpassphrase timeout argument (Fuzzbawls)


	#719 463fd38325 [RPC] Fix verifychain (Fuzzbawls)


	#711 17d1f30131 [RPC] Don’t allow backupwallet to overwrite the wallet-in-use (Fuzzbawls)


	#688 64071d142d [Zerocoin] RPC import/export zerocoins private key standardized + Cleanup in AccPoK and SoK to avoid redundant calculations. (furszy)






Wallet


	#813 80bf51e7c9 [Refactoring] [Move Only] Move wallet files into their own folder (warrows)


	#916 a4f02ed946 [Staking] Don’t assert if we were beaten to the block (CaveSpectre11)


	#842 c6c84fe85f [Wallet] [zPIV] Precomputed Zerocoin Proofs (Fuzzbawls)


	#817 37a06eaa93 [Wallet] Fix segfault with runtime -disablewallet (Fuzzbawls)


	#763 d4762f7e7a [Wallet] Add automint address (Fuzzbawls)


	#759 19fd0877cd [Wallet] Avoid failed zPIV spend because of changed seed (warrows)


	#755 65be6b611b [Wallet] Fix zPIV spend when too much mints are selected (warrows)


	#734 5df105fed2 [Staking] Ensure nCredit is correctly initialized in CreateCoinStake (warrows)


	#730 394d48b2c9 [Wallet] fix bug with fWalletUnlockAnonymizeOnly flag setting (random-zebra)


	#715 30048cce62 [Refactor] Remove GetCoinAge (Fuzzbawls)


	#700 a2d717090f [Wallet] Avoid autocombine getting stuck (warrows)


	#656 5272a4f684 [Wallet] Fix double locked coin when wallet and MN are on same machine (Tim Uy)


	#653 fdf4503b66 [Wallet] change COINBASE_MATURITY to Params().COINBASE_MATURITY() (Alko89)


	#597 766d5196c [Wallet] Write new transactions to wtxOrdered properly (Fuzzbawls)


	#603 779d8d597 Fix spending for v1 zPIV created before block 1050020. (presstab)


	#617 6b525f0df [Wallet] Adjust staking properties to lower orphan rates. (presstab)


	#625 5f2e61d60 [Wallet] Add some LOCK to avoid crash (warrows)






Unit Tests


	#806 fc6b5a191d [Test] Create new per-test fixtures (Wladimir J. van der Laan)


	#902 8adeeb9727 [Tests] Add tests for CAddrMan (warrows)


	#822 2b8daac4c0 [Tests] Integrate fake stake tests into parent test suite (Fuzzbawls)


	#812 f8eb7feefc [Regtest][Tests][RPC] Regtest mode + Test suite. (random-zebra)






Budget


	#590 413fad929 [Budget] Fix wrong budget amount (Mrs-X)


	#591 405612f3c Add unit test for budget value. (presstab)






Miscellaneous


	#744 7e52f58b82 [Refactor] Refactor bignum header file into several files (warrows)


	#808 8b54f7150b [Scripts] Add optimize pngs python script (cevap)


	#824 3323f26848 [Refactor] Remove stale obfuscation code (Fuzzbawls)


	#830 81038da4f8 [Refactor] Remove BOOST_FOREACH (Fuzzbawls)


	#844 0a0dcf0d4e [Refactor] Replace deprecated auto_ptr with unique_ptr (cevap)


	#856 da26ddeeb9 [Refactor] Move per-chain budget cycle blocks to chainparams (Fuzzbawls)


	#879 5f0d72659c [Refactor] Rename ui_interface.h file (Fuzzbawls)


	#890 fddac44eab [Refactor] Remove unused setStakeSeen variable (warrows)


	#903 68c81c407a [Log] Handle errors during log message formatting (warrows)


	#904 6f597629d8 [zPIV] Free memory from ToString() (warrows)


	#912 5f167c2c7e [Cleanup] compiler warnings in coinSpend object. (furszy)


	#919 c0233e4af6 [zPIV] Debug missing jump line. (Matias Furszyfer)


	#920 a56cc2948d [Docs] Overhaul documentation files (Fuzzbawls)


	#921 893183339e [Scripts] Overhaul supplemental python/shell scripts (Fuzzbawls)


	#926 49a69b8931 [Doc] 3.3.0 Notable Changes (Fuzzbawls)


	#927 048d1295dc [Trivial] Update header copyright years (Fuzzbawls)


	#865 ede1af4e10 [Main] Don’t return an invalid state when shutting down the wallet (Fuzzbawls)


	#868 a1080d8658 [Performances] Decrease the number of wasted CPU cycles (warrows)


	#788 55ce1619f5 [Misc] Update license year 2019 (Everton Melo)


	#736 d2ad4d6e93 [Utils] Update linters for python3 (Fuzzbawls)


	#699 8b1f68d896 [Refactor] Use references instead of copies in for loops (Fuzzbawls)


	#697 5a5797f5c3 [Trivial] Remove Redundant Declarations (Fuzzbawls)


	#667 49f9a0fa9e [Zerocoin] Clean zerocoin bignum file (warrows)


	#669 dd6909fd30 [Utils] Fix syntax error in gitian-build.sh (Aitor González)


	#632 0d91550ff6 [MoveOnly] Move non-wallet RPC files to subdir (Fuzzbawls)


	#731 f7f49cfa7c [zPIV] Fix bignum overloads when using OpenSSL (Fuzzbawls)


	#692 1fde9b2b7a [Zerocoin] Remove explicit copy assignement operator from Accumulator (warrows)


	#761 88a93bd35a [Refactoring] Abstract out and switch openssl cleanse (Adam Langley)


	#743 af0c340fe0 [Refactor] remove CPubKey::GetHex (random-zebra)


	#737 434abd1ae9 [Refactor] Remove ‘boost::lexical_cast<>’ (random-zebra)


	#769 6482454cf6 [Main] Unify shutdown proceedure in init rather than per-app (Fuzzbawls)


	#815 decee4bc8c [Doc] Update release notes with forthcoming 3.2.0 changes (Fuzzbawls)


	#816 51e7b2c4b0 [Doc] Update build-unix.md (Fuzzbawls)


	#757 a611a7fa77 [Doc] Update doc/build-windows.md (idas4you)


	#778 65caa886ac [Doc] Update README.md (veilgets)


	#703 51663473fc [Docs] Add missing automake dependency (Mrs-X)


	#762 abfceb39a1 [Random] WIN32 Seed Cleanup: Move nLastPerfmon behind win32 ifdef. (21E14)


	#771 4b1be14505 [Main] Clean up sync.cpp/h with upstream declarations (Fuzzbawls)


	#585 76c01a560 [Doc] Change aarch assert sign output folder (Warrows)


	#595 d2ce04cc0 [Tests] Fix chain ordering in budget tests (Fuzzbawls)


	#611 c6a57f664 [Output] Properly log reason(s) for increasing a peer’s DoS score. (Fuzzbawls)


	#649 f6bfb4ade [Utils] Add copyright header to logprint-scanner.py (Fuzzbawls)


	#586 fc211bfdf [Bug] Fix CMasternodeConfig::read (Fuzzbawls)


	#587 69498104f [Bug] Fix Windows icon files (Fuzzbawls)






Credits

Thanks to everyone who directly contributed to this release:


	cpass78


	minerric




and of course


	PIVX team for an awesome codebase








          

      

      

    

  

  
    

    Supplemental Update
    

    
 
  

    
      
          
            
  BLTG Core version 3.0.1 is now available from:  https://github.com/Block-Logic-Technology-Group/bltg/releases

This is a new minor version release, including various bug fixes and performance improvements, as well as updated translations.

Please report bugs using the issue tracker at github: https://github.com/Block-Logic-Technology-Group/bltg/issues

As Block-Logic is based on open-source code from the pivx project, an exhaustive description of all changes can be found at https://github.com/PIVX-Project/PIVX/releases


Supplemental Update

BLTG Core v3.0.1 is a supplemental update for all users to address forking concerns.

Masternodes will need to be restarted once both the masternode daemon and the controller wallet have been upgraded.



How to Upgrade

If you are running an older version, shut it down. Wait until it has completely shut down (which might take a few minutes for older versions), then run the installer (on Windows) or just copy over /Applications/BLTG-Qt (on Mac) or bltgd/bltg-qt (on Linux).



Compatibility

BLTG Core is extensively tested on multiple operating systems using the Linux kernel, macOS 10.10+, and Windows 7 and later.

Microsoft ended support for Windows XP on April 8th, 2014 [https://www.microsoft.com/en-us/WindowsForBusiness/end-of-xp-support], No attempt is made to prevent installing or running the software on Windows XP, you can still do so at your own risk but be aware that there are known instabilities and issues. Please do not report issues about Windows XP to the issue tracker.

Apple released it’s last Mountain Lion update August 13, 2015, and officially ended support on December 14, 2015 [http://news.fnal.gov/2015/10/mac-os-x-mountain-lion-10-8-end-of-life-december-14/]. BLTG Core software starting with v3.0.0 will no longer run on MacOS versions prior to Yosemite (10.10). Please do not report issues about MacOS versions prior to Yosemite to the issue tracker.

BLTG Core should also work on most other Unix-like systems but is not frequently tested on them.



Notable Changes



3.0.1 Change log


	9612bccc2c[Log] supress some logging to debug (cpass78)


	9fd8cb8e32[Net] Add additional checkpoints (cpass78)


	217f0bc524 [Trivial] Update copyright headers (cpass78)




Detailed release notes follow. This overview includes changes that affect behavior, not code moves, refactors and string updates.


Core



Build System



P2P Protocol and Network Code



GUI



RPC/REST



Wallet



Unit Tests



Budget



Miscellaneous



Credits

Thanks to everyone who directly contributed to this release:


	cpass78




and of course


	PIVX team for an awesome codebase








          

      

      

    

  

  
    

    Supplemental Update
    

    
 
  

    
      
          
            
  BLTG Core version 3.1.0 is now available from:  https://github.com/Block-Logic-Technology-Group/bltg/releases

This is a new major version release, including various bug fixes and performance improvements.

Please report bugs using the issue tracker at github: https://github.com/Block-Logic-Technology-Group/bltg/issues

As Block-Logic is based on open-source code from the pivx project, an exhaustive description of all changes can be found at https://github.com/PIVX-Project/PIVX/releases


Supplemental Update

BLTG Core v3.1.0 is a mandatory update for all users. This release contains new consensus rules and improvements that
are not backwards compatible with older versions. Users will need to update their clients before enforcement of
this update goes into effect.

Update enforcement goes into effect at the following times:

Mainnet: Friday, February 21st, 2020 4:00:00 PM GMT / Following Version 2 Stake Modifier block





Masternodes will need to be restarted once both the masternode daemon and the controller wallet have been upgraded.



How to Upgrade

If you are running an older version, shut it down. Wait until it has completely shut down (which might take a few minutes
for older versions), then run the installer (on Windows) or just copy over /Applications/BLTG-Qt (on Mac) or
bltgd/bltg-qt (on Linux).



Compatibility

BLTG Core is extensively tested on multiple operating systems using the Linux kernel, macOS 10.10+, and Windows 7 and later.

Microsoft ended support for Windows XP on April 8th, 2014 [https://www.microsoft.com/en-us/WindowsForBusiness/end-of-xp-support], No attempt is made to prevent installing or running the software on Windows XP, you can still do so at your own risk but be aware that there are known instabilities and issues. Please do not report issues about Windows XP to the issue tracker.

Apple released it’s last Mountain Lion update August 13, 2015, and officially ended support on December 14, 2015 [http://news.fnal.gov/2015/10/mac-os-x-mountain-lion-10-8-end-of-life-december-14/]. BLTG Core software starting with v3.0.0 will no longer run on MacOS versions prior to Yosemite (10.10). Please do not report issues about MacOS versions prior to Yosemite to the issue tracker.

BLTG Core should also work on most other Unix-like systems but is not frequently tested on them.



Notable Changes


Internal (Core) Changes


Version 2 Stake Modifier

A new 256-bit modifier for the proof of stake protocol has been defined, CBlockIndex::nStakeModifierV2.
It is computed at every block, by taking the hash of the modifier of previous block along with the coinstake input.
To meet the protocol, the PoS kernel must comprise the modifier of the previous block.

Changeover enforcement of this new modifier is set to occur at block 699000 for mainnet.



Block index batch writing

Block index writes are now done in a batch. This allows for less frequent disk access, meaning improved performances
and less data corruption risks.



Eliminate needless key generation

The staking process has been improved to no longer request a new (unused) key from the keypool. This should reduce
wallet file size bloat as well as slightly improve staking efficiency.




GUI Changes


Removal of zero-fee transaction option

The long term viability of acceptable zero-fee transaction conditions is in need of review. As such, we are
temporarily disabling the ability to create zero-fee transactions.



Show latest block hash and datadir information tab

A QoL addition has been made to the Information tab of the UI’s console window, which adds the display of both the
current data directory and the latest block hash seen by the client.




RPC Changes


Require valid URL scheme when preparing/submitting a proposal

The preparebudget and submitbudget RPC commands now require the inclusion of a canonical URL scheme as part of
their url parameter. Strings that don’t include either http:// or https:// will be rejected.

The 64 character limit for the url field is inclusive of this change, so the use of a URL shortening service may
be needed.




Testing Suite Changes


Functional testing readability

Several changes have been introduced to the travis script in order to make the output more readable. Specifically it
now lists tests left to run and prints the output of failing scripts.




Build System Changes


OpenSSL configure information

When the configure step fails because of an unsupported OpenSSL (or other library), it now displays more information
on using an override flag to compile anyways. The long term plan is to ensure that the consensus code doesn’t depend
on OpenSSL in any way and then remove this configure step and related override flag.





3.1.0 Change log

Detailed release notes follow. This overview includes changes that affect behavior, not code moves, refactors and
string updates. For convenience in locating the code changes and accompanying discussion, both the pull request and git merge commit are mentioned.


Core Features


	#983 ac8cb7376d [PoS] Stake Modifier V2 (random-zebra)


	#958 454c487424 [Staking] Modify miner and staking thread for efficiency (Cave Spectre)


	#915 9c5a300624 Modify GetNextWorkRequired to set Target Limit correctly (Cave Spectre)


	#952 7ab673f6fa [Staking] Prevent potential negative out values during stake splitting (Cave Spectre)


	#941 0ac0116ae4 [Refactor] Move ThreadStakeMinter out of net.cpp (Fuzzbawls)


	#932 924ec4f6dd [Node] Do all block index writes in a batch (Pieter Wuille)






Build System


	#943 918852cb90 [Travis] Show functional tests progress (warrows)


	#957 2c9f624455 [Build] Add info about ‘–with-unsupported-ssl’ (Warrows)






P2P Protocol and Network Code


	#987 fa1dbab247 [Net] Protocol update enforcement for 70917 and new spork keys (Fuzzbawls)






GUI


	#933 e47fe3d379 [Qt] Add blockhash + datadir to information tab (Mrs-X)






RPC/REST


	#950 3d7e16e753 [RPC] require valid URL scheme on budget commands (Cave Spectre)


	#964 a03fa6236d [Refactor] Combine parameter checking of budget commands (Cave Spectre)


	#965 b9ce433bd5 [RPC] Correct issues with budget commands (Cave Spectre)






Wallet


	#939 37ad934ad8 [Wallet] Remove (explicitely) unused tx comparator (warrows)


	#980 8b81d8f6f9 [Wallet] Remove Bitcoin Core 0.8 block hardlinking (JSKitty)


	#982 a0a1af9f78 [Miner] Don’t create new keys when generating PoS blocks (random-zebra)






Test Suites


	#961 2269f10fd9 [Trivial][Tests] Do not fail test when warnings are written to stderr (random-zebra)


	#976 12de5ec1dc [Refactor] Fix stake age checks for regtest (random-zebra)






Miscellaneous


	#947 6ce55eec2d [Scripts] Sync github-merge.py with upstream (Fuzzbawls)


	#948 4a2b4831a9 [Docs] Clean and re-structure the gitian-keys directory (Fuzzbawls)


	#949 9e4c3576af [Refactor] Remove all “using namespace” statements (warrows)


	#951 fa40040f80 [Trivial] typo fixes (Cave Spectre)


	#986 fdd0cdb72f [Doc] Release notes update (Fuzzbawls)






Credits

Thanks to everyone who directly contributed to this release:


	Cave Spectre


	Chun Kuan Lee


	Fuzzbawls


	Isidoro Ghezzi


	JSKitty


	MarcoFalke


	Mrs-X


	Pieter Wuille


	Steven Roose


	Warrows


	furszy


	random-zebra


	cpass78




and of course


	PIVX team for an awesome codebase








          

      

      

    

  
_static/comment-close.png





_static/comment.png





_static/comment-bright.png





_static/file.png





_static/down-pressed.png





_static/down.png





_static/minus.png





_static/plus.png





_images/create_vm_file_location_size.png
File location and size

Please type the name of the new virtual hard drive file into the box below
or click on the folder icon to select a different folder to create the file in.

gitianbuild 7]
Select the size of the virtual hard drive in megabytes. This size is the limit

on the amount of file data that a virtual machine will be able to store on
the hard drive.

—_—) 40.00 GB

4.00MB 2.00TB

<Back Cancel






nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/up-pressed.png





_static/up.png





_images/create_vm_memsize.png
Memory size

Select the amount of memory (RAM) in megabytes to be
allocated to the virtual machine.

The recommended memory size is 512 MB.

—(} 1024 || MB

amB 8192 MB.

<Back | [Nexta) | cancel






_images/create_vm_page1.png
& % @ v @ Details
New Settings Show Discard
9 _

Name and operating system

Snapshots

Please choose a descriptive name for the new virtual machine
and select the type of operating system you intend to install

A& on it. The name you choose will be used throughout:
VirtualBox to identify this machine.
i 2 Name: [ gitianbuild
=~ Type: | Linux
{ Version: | Debian &

Hide Description

Host Driver: PulseAudio
Controller:  ICHAC97 b





_images/create_vm_hard_drive.png
Hard drive

IFyou wish you can add a virtual hard drive to the new
machine. You can either create a new hard drive file or select
one from the list or from another location using the folder
icon.

IF you need a more complex storage set-up you can skip this.
step and make the changes to the machine settings once the
machineis created.

The recommended size of the hard drive is 8.00 GB.
© Do not add a virtual hard drive

@ Create a virtual hard drive now

Use an existing virtual hard drive file

B @

<Back | | Create| | Cancel






_images/create_vm_hard_drive_file_type.png
Hard drive File type

Please choose the type of ile that you would like to use For the new virtual
hard drive. If you do not need to use it with other virtualization software
you can leave this setting unchanged.

@ VDI (VirtualBox Disk Image)

*) VMDK (Virtual Machine Disk)

) VHD (virtual Hard Disk)
HDD (Parallels Hard Disk)
QED (QEMU enhanced disk)
QCOW (QEMU Copy-On-Wirite)

Hide Description | | < Back u cancel





_images/debian_install_11_partition_disks.png
tition

rtitioning a disk
it m

<Tab> moves; <Space> selects; <Enter> activates buttons





_images/debian_install_12_choose_disk.png
[11] Partition disks

conf irmed

<Tab> moves; <Space> selects; <Enter> activates buttons





_images/create_vm_storage_physical_hard_drive.png
Storage on physical hard drive

Please choose whether the new virtual hard drive file should grow as it is
used (dynamically allocated) or if it should be created at its maximum size

(fixed size).

Adynamically allocated hard drive file will only use space on your physical
hard drive asit fills up (up to a maximum fixed size), although it will not
shrink again automatically when space on it s freed.

AFixed size hard drive file may take longer to create on some systems but
is often Faster to use.

@ Dynamically allocated

) Fixedsize

<Back | [Nexta) | cancel






_images/debian_install_10_configure_clock.png
[!] Configure the clock

If the desired time zone is not listed, then please go back to the step 'Choose language'
and select a country that uses the desired time zone (the country where you live or are
located) .

Select your time zone:

Central
Mountain
Pacific
Alaska
Hawaii
Arizana

East Indiana
Samoa

<Go Back>

ctivates buttons





_images/debian_install_13_partition_scheme.png
Partitionin

titin
usr,

<Tab> moves; <Space> selects; <Enter> activates buttons





_images/debian_install_14_finish.png
[11] Partition disks

This is an overview of your currently configured partitions and mount points. Select a
partition to modify its settings (file system, mount point, etc.), a free space to create
partitions, or a device to initialize its partition table.

Guided partitioning

Conf igure softuare RAID

Configure the Logical Volume Manager
Configure encrypted volumes

SCST1 (0,0,0) (sda) - 42.9 GB ATA VDX HARDDISK

#1 primary 41.2 68 f extd  /
#5 logical 1.8 6B f swap  suap

<Go Back>

buttons






_images/debian_install_15_write_changes.png
tition

low will be written to the disks. Otheruise, you

1 (0,0,0)
1 (0,0,0)

<Tab> moves; <Space> selects; <Enter> activates buttons





_images/debian_install_19_software_selection.png
Debian desktop environment]
Heb server
Frint server

SOL database

DNS Server

File server

Mail server

SSH server

Laptop

Standard sustem utilities

<Tab> moves; <Space> selects; <Enter> activates buttons





_images/debian_install_1_boot_menu.png
Debian GNU/Liniins boot menu

debian

GNU/Linux

Press ENTER to boot or THB to edit a menu entry






_images/debian_install_16_choose_a_mirror.png
[1] Configure the package manager

The goal is to find a mirror of the Debian archive that is close to you on the network —-
be auare that nearby countries, or even your own, may not be the best choice

Debian archive mirror country:

Japan
Kazakhstan

Kenya

Korea, Republic of
Latvia

Lithuania

Luxembourg

Macedonia, Republic of
Madagascar

Malaysia

Halta

Mexico

Moldova

New Caledania

New Zealand
Nicaragua

Noruay

Fhilippines

Foland

Portugal

Romania

Russian Federation

<Go Back>

ctivates buttons





_images/debian_install_18_proxy_settings.png
informat i

<Tab> moves; <Space> selects; <Enter> activates buttons





_images/debian_install_2_select_a_language.png
[11] Select a language

Choose the language to be used for the installation process. The selected language will
also be the default language for the installed sustem

Language:

c No localization
Albanian shaip
frabic e
Asturian Asturianu
Basgue Euskara
Belarusian Benapyckas
Bosnian Bosanski
Bulgarian Brarapcku
Catalan Catald
Chinese (Simplified) ()
Chinese (Traditional) ()

Croatian Hrvatski
czech CeStina
Danish Dansk.
Dutch Nederlands

Esperanto Esperanto
Estonian Eesti
Finnish Suomi
French Francais
Galician Galego
Gernan Deutsch
Greek EAAY LKE:

<Go Back>

b:





_images/debian_install_3_select_location.png
[11] select your location

The selected location will be used to set your time zone and also for example to help
select the system locale. Normally this should be the country where you live.

This is a shortlist of locations based on the language you selected. Choose "other' if
your location is not listed.

Country, territory or area:

Antigua and Barbuda
Australia
Botsuana
Canada

Hong Kong
India
Ireland

New Zealand
Nigeria
Fhilippines
Singapore
South Africa

United Klnﬁdnm

Zzambia
2imbabue
ather

<Go Back>

b: 3 = buttans





_images/debian_install_20_install_grub.png
<Tab> moves; <Space> selects; <Enter> activates buttons





_images/debian_install_21_finish_installation.png
[11] Finish the installation

Cont inue:

<Tab> moves; <Space> selects; <Enter> activates buttons





_images/debian_install_5_configure_the_network.png
<Tab> moves; <Space> selects; <Enter> activates buttons





_images/debian_install_6a_set_up_root_password.png
